R | ∑x | ∑y | ∑x2 | ∑y2 | ∑xy | wsp. A | korelacja r |
---|---|---|---|---|---|---|---|
2000 | 3,75·10-5 | -16,380704 | 3,4375·10-10 | 60,610547950 | -14,255729·10-5 | -367340,7175 | -0,9668 |
4000 | 3,75·10-5 | -9,649572 | 3,4375·10-10 | 22,022938180 | -8,689465·10-5 | -243061,2380 | -0,9968 |
6000 | 3,75·10-5 | -6,826419 | 3,4375·10-10 | 11,136022930 | -6,184372·10-5 | -175346,1776 | -0,9990 |
8000 | 3,75·10-5 | -5,241273 | 3,4375·10-10 | 6,646800808 | -4,779205·10-5 | -137454,5639 | -0,9996 |
10000 | 3,75·10-5 | -4,189593 | 3,4375·10-10 | 4,261100908 | -3,827082·10-5 | -110499,3221 | -0,9999 |
$$A = \frac{n\sum_{i = 1}^{i = 6}x_{i}y_{i} - \sum_{i = 1}^{i = 6}x_{i}\sum_{i = 1}^{i = 6}y_{i}}{n\sum_{i = 1}^{i = 6}x_{i}^{2} - \left( \sum_{i = 1}^{i = 6}x_{i} \right)^{2}}$$
$$r = A\sqrt{\frac{n\sum_{i = 1}^{i = 6}x_{i}^{2} - \left( \sum_{i = 1}^{i = 6}x_{i} \right)^{2}}{n\sum_{i = 1}^{i = 6}{x\backslash y}_{i}^{2} - \left( \sum_{i = 1}^{i = 6}y_{i} \right)^{2}}}$$