ekspresja genu

Ekspresja genu – proces, w którym informacja genetyczny zawarta w genie zostaje odczytana i przepisana na jego produkty, które są białkami lub różnymi formami RNA.Przebieg tego procesu różni się nieco pomiędzy bakteriami i eukariotami. U bakterii geny są zwykle zorganizowane w grupy genów zwane operonami (np. operon laktozowy), które są regulowane jako grupa i przepisywane na zawierający kilka genów mRNA.U eukariotów regulacja oraz przepisywanie na mRNA odnosi się do pojedynczego genu. Proces ten zachodzi w kilku etapach (Eukariota, w uproszczeniu, dla genu kodującego białko):

Ekspresja RNA jest w etapach podobna do białkowej. Nie występuje translacja. Nie dla każdego rodzaju nieinformatycznego-RNA obejmuje wszystkie etapy. Występuje inicjalizacja, transport, splicing, modyfikacje, samoporządkowanie cząsteczki, funkcjonowanie i degradacja.

Regulacja ekspresji genu to złożony wieloczynnikowy proces. Na każdym z etapów ekspresja genu może być regulowana za pomocą różnych mechanizmów. Ekspresja genu zależy od rodzaju komórki, fazy rozwoju organizmu, metabolicznego/fizjologicznego stanu komórki.

Transkrypcja

U eukariotów występuje kilka rodzajów polimeraz RNA, w tym zbudowane z wielu podjednostek polimerazy RNA. Polimeraza RNA II (Pol II) syntetyzuje pre-mRNA i większość snRNA, polimeraza RNA I (Pol I) transkrybuje część rRNA, a polimeraza RNA III (Pol III) odpowiada za syntezę tRNA, 5S rRNA i innych małych jądrowych RNA.W przeciwieństwie do polimerazy RNA bakterii, jądrowe polimerazy RNA organizmów eukariotycznych potrzebują do rozpoczęcia transkrypcji zestawu właściwych dla danej polimerazy podstawowych czynników transkrypcyjnych, ponieważ rozpoznają nie sekwencję promotora, ale kompleks kwas nukleinowy-białko. Sterowanie transkrypcją - przez związanie czynników białkowych czy hormonalnych - może odbywać się z różnych miejsc na DNA. Miejsca te mogą leżeć w obrębie genów (promotory), lub też w odległości kilku tysięcy nukleotydów (enhancery, silencery). Pierwszym etapem transkrypcji jest powstanie kompleksu preinicjacyjnego (PIC) składającego się z ogólnych czynników transkrypcyjnych, który wiąże się z sekwencją promotora. Na dostępność miejsc wiązania się czynników transkrypcyjnych wpływa struktura (upakowanie) chromatyny. Należy jednak zaznaczyć, że białka remodelujące chromatynę mogą wpływać na jej strukturę przed, w trakcie i po powstaniu PIC.

Wiele promotorów genów transkrybowanych przez jądrową polimerazę RNA II zawiera sekwencję TATA (ang. TATA box) położoną ok. 25 par zasad przed miejscem rozpoczęcia transkrypcji. Sekwencja ta jest rozpoznawana przez białko TBP (ang. TATA-box binding protein), które staje się zalążkiem kompleksu preinicjacyjnego. Drugą sekwencją rozpoznawaną przez ogólne czynniki transkrypcyjne jest sekwencja otaczająca miejsce startu transkrypcji (+1). Polimeraza RNA II wiąże się do kompleksu preinicjacyjnego i rozpoczyna transkrypcję. Do inicjacji transkrypcji przez polimerazę RNA II in vivo konieczny jest też kompleks białkowy zwany Mediatorem. W regulacji transkrypcji u eukariontów mogą brać udział także inne czynniki transkrypcyjne wiążące się z sekwencjami enhancerów i silencerów, często położone w znacznej odległości od miejsca inicjacji transkrypcji. Do rozpoczęcia transkrypcji przez polimerazę RNA I i III potrzebne są inne sekwencje oraz zestaw ogólnych czynników transkrypcyjnych specyficznych dla tych polimeraz.

Następny etap transkrypcji to elongacja. Polimeraza RNA przesuwa się dalej, a ogólne czynniki transkrypcyjne są uwalniane. Terminacja transkrypcji nie wymaga białek uwalniających, a jej sygnały są inne, niż u prokariontów. Zaproponowano dwa modele terminacji transkrypcji u eukariotów. Według pierwszego po transkrypcji miejsca poliadenylacji w polimerazie zachodzi zmiana konformacji, która ułatwia terminację transkrypcji. Według drugiego modelu w terminacji transkrypcji bierze udział trawiąca RNA egzonukleaza, która przecina cząsteczkę mRNA, a następnie niszczy ten fragment RNA, który ciągle jest związany z polimerazą.

Transkrypt jest komplementarny do nici matrycowej i homologiczny z nicią kodującą. Należy jednak pamiętać, że jakkolwiek homologami G, C i A w pre-mRNA są rybonukleotydy niosące te same zasady azotowe, to homologiem T jest rybonukleotyd zawierający uracyl (U) a nie tyminę.

Należy pamiętać, że informacje o strukturze (budowie) kodowanego białka zawarte są jedynie we fragmentach genu zwanych eksonami, natomiast introny to fragmenty będące najczęściej nic nie znaczącymi wtrętami (są usuwane przed zajściem translacji).

Obróbka posttranskrypcyjna

Taki pierwotny transkrypt - pre-mRNA - musi jednak zostać poddany obróbce posttranskrypcyjnej, aby można go było wykorzystać do translacji. W przeciwnym wypadku mRNA po wydostaniu się z jądra zostałoby zniszczone w cytozolu przez białka, których zadaniem jest niszczenie kwasów nukleinowych. Jest to obrona przed dostaniem się do komórki obcego kwasu nukleinowego np. wirusa. Aby mRNA był rozpoznawany jako "swój" ma miejsce obróbka posttranskrypcyjna. Polega ona na:

Kwasy rybonukleinowe, RNAorganiczne związki chemiczne z grupy kwasów nukleinowych, zbudowane z rybonukleotydów połączonych wiązaniami fosfodiestrowymi. Z chemicznego punktu widzenia są polimerami kondensacyjnymi rybonukleotydów. Występują w jądrach komórkowych i cytoplazmie, często wchodząc w skład nukleoprotein. Znanych jest wiele klas kwasów rybonukleinowych o zróżnicowanej wielkości i strukturze, pełniących rozmaite funkcje biologiczne. Zarówno struktura, jak i funkcja RNA jest silnie uzależniona od sekwencji nukleotydów, z których zbudowana jest dana cząsteczka.

Wśród kwasów rybonukleinowych wyróżnia się m.in.:

RNA jest zazwyczaj jednoniciowy; postać dwuniciowa, analogiczna do dwuniciowego DNA, występuje głównie jako materiał genetyczny niektórych wirusów i wiroidów (porównaj też Retrowirusy). Jednak w wypadku cząsteczek jednoniciowych, szczególnie pełniących funkcje enzymatyczne, lub współdziałających w tych funkcjach (np. rRNA, tRNA) tworzenie fragmentów dwuniciowych przez parowanie różnych odcinków tej samej nici decyduje o strukturze całej cząsteczki.

Cechy kodu genetycznego

translacja – w biologii molekularnej, proces syntezy łańcucha polipeptydowego białek na matrycy mRNA. W jego wyniku dochodzi do ostatecznego przetłumaczenia informacji genetycznej zawartej pierwotnie w kodzie genetycznym DNA na konkretną strukturę białka, zależną od uszeregowania aminokwasów w łańcuchu polipeptydowym.

Translacja jest drugim (po transkrypcji) procesem w biosyntezie białka. Powstawanie łańcucha polipeptydowego sterowane jest przez sekwencję mRNA. Translacja odbywa się w cytoplazmie lub na błonach siateczki śródplazmatycznej szorstkiej. Proces ten jest katalizowany przez rybosom obejmujący podjednostkami przesuwającą się nić mRNA. Rybosomy składają się z dwóch podjednostek, małej i dużej, które są zbudowane z białek i rRNA, a funkcję katalityczną pełnią enzymy (rybozymy) zawarte w dużej podjednostce rybosomu. Translacja na jednej cząsteczce mRNA może być prowadzona przez wiele rybosomów równocześnie. Taki kompleks mRNA związanego z wieloma rybosomami nazywa się polisomem lub polirybosomem.

Translacja składa się z czterech faz:

W aktywacji właściwy aminokwas jest dołączany do właściwego tRNA za pomocą wiązania estrowego, powstałego przez reakcję grupy karboksylowej aminokwasu i grupy OH przy końcu 3' tRNA. Taki zespół określa się mianem aminoacylo-tRNA.

Inicjacja translacji ma miejsce, kiedy mała podjednostka rybosomu przyłącza się do końca 5' mRNA. Do małej podjednostki przyłącza się duża podjednostka rybosomu. Na podjednostce 50s uaktywniają się dwa miejsca: P - miejsce peptydowe i A - miejsce akceptorowe. Pierwszy aminoacylo-tRNA ustawia się w miejscu P.

Elongacja ma miejsce, kiedy następny aminoacylo-tRNA przyłącza się do rybosomu w miejscu A. Następnie proces translacji zachodzi na zasadzie komplementarności kodonu mRNA z antykodonem na tRNA. Rybosom i tRNA są tak ukształtowane, aby dwa aminokwasy, przyłączone do tRNA zajmujące w rybosomie miejsca A i P znajdowały się blisko siebie. Dzięki temu zachodzi reakcja między grupą aminową i karboksylową - dwa aminokwasy łączą się. Ten proces - tworzenie wiązań peptydowych jest katalizowany przez peptydylotransferazę - rybozym (rRNA) wchodzący w skład rybosomu. Po syntezie, tRNA szybko zwalnia miejsce P i wraca do cytoplazmy, z kolei aminoacylo-tRNA ulega przesunięciu z miejsca A na miejsce P. Proces ten nazywamy translokacją. Jednocześnie przesuwa się także mRNA. Wielkość tego przesunięcia wynosi zawsze trzy nukleotydy. Na miejsce A nasuwa się nowy tRNA zawierający antykodon odpowiadający kolejnemu kodonowi na mRNA. Proces elongacji powtarza się aż do napotkania przez podjednostkę mniejszą rybosomu w miejscu A kodonu stop (UAA, UAG lub UGA). Tych trójek kodonowych, w normalnych warunkach, nie koduje żaden tRNA.

W tym momencie następuje terminacja translacji. Łańcuch polipeptydowy zostaje uwolniony do cytoplazmy, tRNA zostaje oddzielone od mRNA, a rybosom rozpada się na podjednostki, które mogą zostać ponownie wykorzystane do inicjacji translacji kolejnego mRNA.

Za sortowanie białek odpowiedzialny jest jeden szczególny kompleks molekularny. W jego skład wchodzi czynnik SRP (Signal Recognition Particle), aktywny rybosom, który jest odpowiedzialny za syntezę białka oraz odpowiedni receptor.

Kluczowym elementem tej maszynerii jest sekwencja sygnałowa zlokalizowana na N-terminalnym końcu białka, które podlega sortowaniu. Sekwencja ta odgrywa w komórce podobną rolę jak kod pocztowy. Czynnik SRP odczytuje sekwencję sygnalną gdy tylko przyłączy się do łańcucha polipeptydowego białka syntetyzowanego w rybosomie. SRP jest zbudowany z białka oraz drobnocząsteczkowego kwasu rybonukleinowego, 7SL RNA. Czynnik ten przyłącza się też pośrednio do rybosomu. Kompleks kieruję się w stronę ER, gdzie SRP rozpoznaje odpowiedni receptor zakotwiczony w błonie. SRP i receptor kierują kompleks do tak zwanego translokonu, kompleksu w błonie retikulum endoplazmatycznego. Receptor SRP jest integralnym białkiem błonowym zbudowanym z 2 podjednostek, z których jedna ma zdolności GTP-azy (uwalnia energię z GTP). Energia ta pozwala na dysocjację SRP, a jednocześnie umożliwia związanie się peptydu sygnałowego z kanałem translokacyjnym w błonie (translokon). Translokon jest zbudowany z kilku białek przezbłonowych tworzących kanał, przez który zostaje przepchnięty łańcuch białkowy na drugą stronę błony siateczki endoplazmatycznej. Po odłączeniu SRP od kompleksu, włącza się synteza białka (zablokowana po przyłączeniu SRP), a powstające biało przechodzi na drugą stronę membrany.

Ważnym zjawiskiem jest fakt, że rybosom nie może związać się z translokonem w chwili gdy przyłączony jest do niego czynnik SRP. Rybosom wymaga dodatkowego wsparcia ze strony receptora SRP aby mógł się przyłączyć do kanału translokacyjnego w chwili oddysocjowania SRP. Teraz, gdy znana jest struktura kompleksu, możliwe jest zbadanie interakcji pomiędzy receptorem a rybosomem i czynnikiem SRP. Będzie również możliwe zbadanie procesu odłączania czynnika SRP od rybosomu i uwalniania miejsc wiązania translokonu. Pełne zrozumienie procesu sortowania białek pozwoli na dokładniejszą analizę ekspresji białek membranowych i sekrecyjnych.

Białka SNARE należą do dużej rodziny białek transbłonowych. Biorą one udział w rozpoznawaniu i fuzji pęcherzyków z błoną komórkową.

Białka SNARE można podzielić na dwie grupy:

Toksyny wytwarzane przez bakterie z rodziny Clostridium (toksyny tężcowej i pewnych rodzajów toksyn botulinowych), są endoproteazami, które powodują rozkład białek kompleksu SNARE. Prowadzi to do zahamowania przewodnictwa na poziomie synaptycznym.

Termin „chaperon” (ang. chaperone - opiekun) po raz pierwszy został użyty przez Rona Laskeya do opisania nukleoplazminy, czyli białka niezbędnego przy tworzeniu się nukleosomów z histonów i DNA. Dziś tym mianem określa się również inne białka, które wiążą się w sposób odwracalny z fałdującymi się polipeptydami i zapobiegają tym samym tworzeniu się nieprawidłowych wiązań. Ich nieobecność może powodować niewłaściwe łączenie się łańcuchów i ich agregowanie w nierozpuszczalne kompleksy.

Białka opiekuńcze pełnią funkcję katalizatorów i wspomagają proces samodzielnego fałdowania się łańcuchów. Nie wchodzą one w skład ostatecznego produktu, nie przekazują również żadnych dodatkowych informacji na temat konformacji cząsteczki, której kształt determinowany jest jedynie przez sekwencję aminokwasową.

Chaperony utrzymują białko w jednej całości, aż do zakończenia procesu jego syntezy. Jeszcze w trakcie trwania translacji łączą się one z N-końcem powstającego łańcucha. Jest to szczególnie ważne w wypadku białek, których C-koniec zawiera ważne informacje na temat konformacji. Chaperony są również zaangażowane w tworzenie się i degradację białek złożonych z kilku łańcuchów polipeptydowych. Mogą one również stabilizować strukturę polipeptydu podczas jego transportu do poszczególnych kompartymentów i organelli, np. z cytozolu do mitochondriów lub do światła retikulum endoplazmatycznego. W tym ostatnim stężenie białek jest wyższe od optymalnego, co sprzyja przypadkowym interakcjom i poplątaniu łańcuchów.


Wyszukiwarka

Podobne podstrony:
Replikacja i ekspresja genu
nosicielstwo gen. - ekspresja i penetracja genu, VI rok, Genetyka, Genetyka, Egzamin
Ekspresja genów
Ekspresem przez fizykę jądrową
Gradient ekspresji genów w regulacji morfogenezy u ssaków, Medycyna ŚUM, Rok 1, Biologia medyczna, T
Ekspresja informacji genetycznej-transkrypcja i translacja, NAUKA
Ekspresowe spaghetti z sosem z orzechów włoskich
instrukcja obs ugi do ekspresu do kawy JURA Impressa XS90 One Touch black PL (videotesty pl)
2004 polimorfizm genu adiponektyny a odpornosc na insluine P
bialetti mokkona ekspres do kawy (www instrukcja pl)
SKALA EKSPRESJI GNIEWU- SEG, ćwiczenia
Związek genu TPH2 i jego rola w występowaniu zachowań samobójczych Kamrowska
penetracja ekspresywność plejotropia, genetyka, kolokwia pytania i odp
Odcinek 6 Błyskawiczne uspokojenie, Nigella Ekspresowo
Odcinek 5 Zabawa na całego, Nigella Ekspresowo
Funkcje emocji oraz ich ekspresja -notatka, PSYCHOLOGIA, I ROK, semestr II, psychologia emocji i mot

więcej podobnych podstron