Chemia wiązania chemiczne

Wiązanie chemiczne - Według klasycznej definicji to każde trwałe połączenie dwóch atomów. Wiązania chemiczne powstają na skutek uwspólnienia dwóch lub większej liczby elektronów pochodzących bądź z jednego, bądź z obu łączących się atomów lub przeskoku jednego lub większej liczby elektronów z jednego atomu na drugi i utworzenia w wyniku tego tzw. pary jonowej.

Wiązania wielokrotne i pojedyncze - Do utworzenia typowego wiązania chemicznego potrzeba minimum dwóch elektronów, zwykle po jednym z każdego łączącego się atomu. Wiązanie, które tworzą dwa elektrony nazywa się wiązaniem pojedynczym. Gdy uczestniczących elektronów jest 4, mamy do czynienia z wiązaniem podwójnym, które jednak w istocie jest dwoma różnymi wiązaniami łączącymi te same atomy. Gdy dzielonych elektronów jest 6, mamy do czynienia z wiązaniem potrójnym.

Wiązania pojedyncze, podwójne i potrójne występują dość powszechnie. Znacznie rzadziej spotykane są wiązania o większej krotności, niemniej znane jest kilkaset związków, w których występują wiązania poczwórne. Znane są też nieliczne związki z wiązaniem pięciokrotnym, np. dimer podstawionego terfenylo chromu. Ponadto opisano bardzo rzadkie przypadki wiązań sześciokrotnych. Taki rząd wiązań ustalono dla cząsteczek Mo2 i W2 w fazie gazowe

Delokalizacja wiązań - Wiele wiązań wielokrotnych jest zdelokalizowanych, tzn. tworzące je elektrony są uwspólnianie przez więcej niż dwa atomy. Delokalizacja ta może przybierać albo formę rezonansu chemicznego tak jak to ma miejsce w np. związkach aromatycznych lub formę pasm orbitalowych - występujących zwłaszcza w kryształach metali (tzw. wiązanie metaliczne) ale również w niektórych rodzajach polimerów oraz sprzężonych dienów. Występowanie pasm zdelokalizowanych orbitali umożliwia powstanie pasm przewodnictwa, które nadają materiałom cechy przewodników elektrycznych.

Podział wiązań ze względu na ich naturę - Podział wiązań ze względu na ich naturę wynika z odpowiedzi na pytanie, które w uproszczeniu brzmi:

Gdzie znajdują się elektrony uwspólnianie w ramach tych wiązań?

Podział ten jest bardzo nieostry, często dyskusyjny w przypadku wielu związków chemicznych i silnie zależy od przyjętych kryteriów, które są również często dyskutowane i powoli ewoluują. Dokładną naturę wiązań bada się złożonymi metodami fizykochemicznymi, takimi jak np. rentgenografia strukturalna, EPR, NMR, które umożliwiają tworzenie "map" gęstości elektronowej występującej wokół jąder atomów tworzących związki chemiczne. Ze względu na to, że wiązania chemiczne są w istocie zjawiskami kwantowymi pełen opis ich natury i odmian jest możliwy dopiero na poziomie opisu mechaniki kwantowej.

Wiązanie kowalencyjne niespolaryzowane - Wiązanie kowalencyjne niespolaryzowane powstaje na skutek nakładania się orbitali atomowych obsadzonych pojedynczymi elektronami o przeciwnej orientacji spinu. Wiązanie to powstaje, gdy różnica elektroujemności wynosi od 0 do 0,4.

Substancje, w których przeważa wiązanie kowalencyjne niespolaryzowane mogą występować w 3 stanach skupienia. Charakteryzują się niskimi temperaturami topnienia i wrzenia, dobrze rozpuszczają się w rozpuszczalnikach niepolarnych (np: chloroform, aceton, benzen), natomiast słabo w rozpuszczalnikach polarnych (np: woda). W stanie ciekłym rozpuszczone w wodzie nie przewodzą prądu. Reakcje z ich udziałem zachodzą powoli i przy małej wydajności.

Wiązanie kowalencyjne spolaryzowane - Wiązanie kowalencyjne powstaje między dwoma atomami niemetali, których wzajemna różnica elektroujemności jest mniejsza od 1,7 w skali Paulinga. Granica ta jest bardzo umowna i ma raczej charakter orientacyjny. Elektrony uwspólnione tworzące wiązanie są przesunięte w stronę atomu pierwiastka o większej elektroujemności, co sprawia, że przy tym atomie tworzy się cząstkowy ładunek elektryczny ujemny, natomiast przy atomie o mniejszej elektroujemności tworzy się dodatni. Wiązanie kowalencyjne spolaryzowane ma charakter dipolu elektrycznego.

Wiązania kowalencyjne można jeszcze podzielić na zwykłe, w których uwspólnione elektrony pochodzą w równej liczbie od obu atomów (jeśli jeden "daje" trzy elektrony, to drugi też "daje" trzy) oraz na wiązania koordynacyjne, w których tylko jeden atom jest donorem elektronów lub liczba elektronów, które "daje" jeden atom nie jest równa liczbie, którą daje drugi.

Wiązania koordynacyjne mają często dokładnie taki sam charakter jak wiązania kowalencyjne. W wielu związkach, w których z rachunku elektronów wynika, że część wiązań jest formalnie kowalencyjnych, a inna część koordynacyjnych są one w rzeczywistości całkowicie nieodróżnialne, posiadają taką samą geometrię i energię i nie da się praktycznie ustalić, które są które. W wielu związkach chemicznych wiązania koordynacyjne daje się jednak wyraźnie wskazać i mają one pewne szczególne własności, których zwykłe wiązania kowalencyjne nie mogą mieć. Przykładem tego rodzaju wiązań są np. te występujące w Pi kompleksach.

Wiązanie jonowe - Wiązanie jonowe powstaje między dwoma atomami, których wzajemna różnica elektroujemności jest bardzo duża (Δeu≥1,7). Elektrony zamiast się uwspólnić "przeskakują" na stałe do jednego z atomów. W wyniku tego jeden z atomów ma nadmiar ładunku ujemnego i staje się ujemnie naładowanym jonem (anionem) a drugi ma nadmiar ładunku dodatniego i staje się kationem. Oba atomy tworzą parę jonową (+)(-), która trzyma się razem na zasadzie przyciągania ładunków elektrostatycznych i może w sprzyjających warunkach ulegać dysocjacji elektrolitycznej.

Na ogół, aby wiązanie się wytworzyło, różnica elektroujemności musi być większa lub równa 1,7 w skali Paulinga, jednak granica, przy której tworzy się wiązanie jonowe jest bardzo płynna, gdyż zależy ona od wielu różnych czynników. Na przykład we fluorowodorze różnica elektroujemności między fluorem a wodorem wynosi aż 1,8 a mimo to wiązanie F-H ma charakter kowalencyjny spolaryzowany.

Wiązanie wodorowe - Wiązanie wodorowe formalnie rzecz biorąc nie jest wiązaniem chemicznym, w tym sensie, że nie powstaje ono na skutek wymiany elektronów i jest zwykle dużo mniej trwałe od "prawdziwych" wiązań, jednak ten rodzaj oddziaływania również łączy ze sobą atomy. Wiązanie wodorowe polega na "dzieleniu" między dwoma atomami (np. tlenu) jednego atomu wodoru, tak, że atom wodoru jest częściowo połączony z nimi oboma. Można to też ująć w ten sposób, że atom wodoru jest powiązany z obydwoma atomami wiązaniami "połówkowymi", gdyż jedno normalne pojedyncze (czyli dwuelektronowe) wiązanie wodór-inny atom jest dzielone na dwa słabsze "półwiązania" inny atom-wodór i wodór-inny atom.

Oddziaływania międzycząsteczkowe - Oddziaływania międzycząsteczkowe to inne niż wiązania chemiczne siły wiążące atomy i cząsteczki. Podstawowa różnica między oddziaływaniami międzycząsteczkowymi a wiązaniami chemicznymi, polega na tym, że nie wiążą one atomów na tyle trwale, aby umożliwiało to uznanie powstałych w ten sposób struktur za związki chemiczne w pełnym znaczeniu tego terminu. Granica między oddziaływaniami międzycząsteczkowymi i wiązaniami jest jednak płynna. Na przykład wiązanie wodorowe - jeśli występuje w obrębie jednej cząsteczki jest często traktowane jak słabe wiązanie chemiczne, jeśli jednak wiąże ono dwie lub więcej cząsteczek w duże konglomeraty o zmiennym składzie, można je traktować jako oddziaływanie międzycząsteczkowe. Tworzeniem się tego rodzaju konglomeratów powiązanych rozmaitymi oddziaływania międzycząsteczkowymi zajmuje się chemia supramolekularna.


Wyszukiwarka

Podobne podstrony:
Chemia wiązania chemiczne
Chemia V Wiązania chemiczne
Chemia wiązania chemiczne
5 Wiazania chemiczne, Budownictwo PK, Chemia, Chemia nieorganiczna od Marysi
Wiązania chemiczne, chemia(2)
Chemia Atom, cząsteczka, wiązanie chemiczne
Chemia - Budowa atomu i wiązania chemiczne(1), EDUKACJA 35 000 TYS. plików z każdej branży
6 Zależność właściwości substancji od rodzaju wiązania chemicznego, Budownictwo PK, Chemia, Chemia n
wiazania chemiczne, Studia, I rok, I rok, I semestr, Chemia I
Chemia, Chemia - Budowa atomu i wiązania chemiczne, LICZBA ATOMOWA(liczba porządkowa):wielkość chara
Walkowiak, chemia ogólna, wiązania chemiczne
chemia zaleznosc wlasciwosci substancji od rodzaju wiazania chemicznego
Wyklad 4 Wiazania chemiczne w cialach stalych
Wiązania chemiczne (II)
6 wykˆad WiĄzania chemiczne[F]
Chemia R cje chemiczne
Wykład 1, budowa atomu, wiązania chemiczne
2 Atom i cząstka Wiązania chemiczne klucz

więcej podobnych podstron