Obiegi pomp ciepła

  1. Obiegi pomp ciepła

    1. Wybór źródeł zasilania dla projektowanych pomp ciepła

Pompa ciepła do ogrzewania wody w basenie zasilania będzie poprzez powietrze.

Pompa ciepła do ogrzewania wody w zbiorniku zasilającym zasilana będzie poprzez grunt.

Rozkłady temperatury w wymiennikach pomp ciepła

Rys 1 Rozkład temperatury w skraplaczu chłodzonym wodą: Tw1, Tw2 - temperatura wlotowa i wylotowa wody, Tk - temperatura skraplania

Rys 2 Rozkład temperatury w skraplaczu chłodzonym wodą: Tw1, Tw2 - temperatura wlotowa i wylotowa wody, Tk - temperatura skraplania

Rys 3 Rozkład temperatur w parowaczu ogrzewanym wodnym roztworem glikolu: Tg1, Tg2 - temperatury wodnego roztworu glikolu na wlocie i wylocie z wymiennika, To - temperatura parowania

Dobór czynników chłodniczych

Pompa zasilana poprzez grunt – czynnik chłodniczy R134a

Pompa zasilana poprzez powietrze – czynnik chłodniczy R404a

Obliczenia wielkości charakteryzujących obieg

T p h s υ
oC bar kJ/kg kJ/(kg∙K) m3/kg
1 0 2.25 399.3 1.75 0.0917
2 82.73 21.17 448.8 1.75 0.0101
3 70 21.09 366.2 1.51 0.0048
4 70 21.02 303.8 1.33 0.0010
5 -7 2.40 303.8 1.33 0.0460
6 -7 2.33 394.4 1.73 0.0890

Właściwa wydajność chłodnicza:


qo = h5 − h1 = 399.3 − 303.8 = 95.5kJ/kg

Właściwa praca sprężania:


l = h2 − h1 = 448.8 − 399.3 = 49.5kJ/kg

Ciepło właściwe skraplania:


qk = h2 − h4 = 448.8 − 303.8 = 145kJ/kg

Strumień masy czynnika chłodniczego:


$${\dot{m}}_{R} = \frac{Q_{k}}{q_{k}} = \frac{50}{145} = 0.348kg/s$$

Wydajność chłodnicza:


$$Q_{o} = {\dot{m}}_{R} \bullet q_{o} = 33.26kW$$

Moc napędowa sprężarki:


$$P = {\dot{m}}_{R} \bullet l = 16.75kW$$

Współczynnik wydajności chłodniczej obiegu:


$$EER = \frac{Q_{o}}{P} = 1.986$$

Współczynnik wydajności grzewczej obiegu:


$$COP = \frac{Q_{k}}{P} = 2.985$$

Objętościowa wydajność chłodnicza:


$$q_{\upsilon} = \frac{q_{o}}{\upsilon_{6}} = \frac{95.5}{0.0890} = 1073kJ/m^{3}$$

T p h s υ
oC bar kJ/kg kJ/(kg∙K) m3/kg
1 12 7.02 375.3 1.63 0.0293
2 62 22.96 399.3 1.63 0.0085
3 50 22.88 328.5 1.51 0.0042
4 50 21.81 276.3 1.25 0.0011
5 5 7.17 276.3 1.27 0.0122
6 5 7.09 368.2 1.60 0.0280

Właściwa wydajność chłodnicza:


qo = h5 − h1 = 375.3 − 276.3 = 99kJ/kg

Właściwa praca sprężania:


l = h2 − h1 = 399.3 − 375.3 = 24kJ/kg

Ciepło właściwe skraplania:


qk = h2 − h4 = 399.3 − 276.3 = 123kJ/kg

Strumień masy czynnika chłodniczego:


$${\dot{m}}_{R} = \frac{Q_{k}}{q_{k}} = \frac{2}{123} = 0.017kg/s$$

Wydajność chłodnicza:


$$Q_{o} = {\dot{m}}_{R} \bullet q_{o} = 0.017 \bullet 99 = 1.6kW$$

Moc napędowa sprężarki:


$$P = {\dot{m}}_{R} \bullet l = 0.017 \bullet 24 = 0.404kW$$

Współczynnik wydajności chłodniczej obiegu:


$$EER = \frac{Q_{o}}{P} = \frac{1.6}{0.404} = 3.96$$

Współczynnik wydajności grzewczej obiegu:


$$COP = \frac{Q_{k}}{P} = \frac{2}{0.404} = 4.95$$

Objętościowa wydajność chłodnicza:


$$q_{\upsilon} = \frac{q_{o}}{\upsilon_{6}} = \frac{99}{0.0280} = 3536kJ/m^{3}$$

Dobór sprężarki

Sporządzone wcześniej wykresy zakładają, że sprawność sprężania izentropowa jest równa n=1. Dla poszczególnych źródeł ciepła obliczono strumień masy czynnika, a następnie wydajność chłodniczą Qo. Na podstawie obliczonej wydajności chłodniczej dokonano doboru sprężarki oraz obliczono współczynnik izentropy n.

Obliczeniowa wartość wydajności chłodniczej to:


Qo = 33.26kW

Na podstawie wydajności dobrano sprężarkę Copeland ZR380KCE-TWD o parametrach:


Qo = 36.53kW


P = 22.76kW

Obliczono sprawność izentropową sprężania:


$$n = \frac{P_{\text{teoret}}}{P} = \frac{16.75}{22.76} = 0.736$$

Sporządzono wykres przemian czynnika oraz przedstawiono parametry obiegu:

Obliczeniowa wartość wydajności chłodniczej to:


Qo = 1.6kW

Na podstawie wydajności dobrano sprężarkę Maneurop MTZ18 o parametrach:


Qo = 3.62kW


P = 1.55kW

Obliczono sprawność izentropową sprężania:


$$n = \frac{P_{\text{teoret}}}{P} = \frac{0.917}{1.55} = 0.592$$

Sporządzono wykres przemian czynnika:

Obliczenie średnic rur w instalacji pompy ciepła

W obliczeniach wykorzystano równanie ciągłości przepływu:


$$\dot{m} = w \bullet A \bullet \rho$$

Po przekształceniu otrzymano wzór:


$$d = \sqrt{\frac{4\dot{m} \bullet \upsilon}{\pi \bullet w}}$$

W poszczególnych punktach prędkości czynnika powinny zawierać się w następujących przedziałach:


w1 = 10 − 12 = 12m/s


w2 = 10 − 12 = 12m/s


w3 = 1 − 1.5 = 1.5m/s


υ1 = 0.0917


υ2 = 0.0099


υ3 = 0.0010

Strumień masy czynnika równy jest:


$${\dot{m}}_{R} = 0.382kg/s$$

Ostatecznie:


$$d_{1} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{1}}{\pi \bullet w_{1}}} = 0.061m$$


$$d_{2} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{2}}{\pi \bullet w_{2}}} = 0.02m$$


$$d_{3} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{3}}{\pi \bullet w_{3}}} = 0.03m$$

Przyjmuje się, że średnica za zaworem dławiącym równa jest:


d4 = 1.5 • d3 = 0.027m

Zgodnie z normą PN-EN 10296-1 przyjęto rury o średnicach:


d1 = 60mm


d2 = 20mm


d3 = 20mm


d4 = 32mm


υ1 = 0.0296


υ2 = 0.0095


υ3 = 0.0012

Strumień masy czynnika równy jest:


$${\dot{m}}_{R} = 0.038kg/s$$

Ostatecznie:


$$d_{1} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{1}}{\pi \bullet w_{1}}} = 0.011m$$


$$d_{2} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{2}}{\pi \bullet w_{2}}} = 0.006m$$


$$d_{3} = \sqrt{\frac{4{\dot{m}}_{R} \bullet \upsilon_{3}}{\pi \bullet w_{3}}} = 0.006m$$

Przyjmuje się, że średnica za zaworem dławiącym równa jest:


d4 = 1.5 • d3 = 0.009m

Zgodnie z normą PN-EN 10296-1 przyjęto rury o średnicach:


d1 = 10mm


d2 = 6mm


d3 = 6mm


d4 = 10mm

----------------------------------------------------------------------------------------------------------------

Wymienniki ciepła

Do pompy ciepła podgrzewającej wodę w zbiorniku akumulacyjnym zastosowano:

Do pompy ciepła podgrzewającej wodę w basenie zastosowano:

wydajność cieplna wymiennika – Qo = 36530W

temperatura wodnego roztworu glikolu na wlocie – Tg1 = 1

temperatura wodnego roztworu glikolu na wylocie – Tg2 = −2

temperatura wrzenia czynnika R134a – To = −7

ciśnienie glikolu - pg = 101.3kPa

ciśnienie wrzenia – po = 225.6kPa

współczynnik przewodzenia ciepła materiału płyt (aluminium) – λAl = 200W/(m • K)

strumień masy czynnika chłodniczego – ${\dot{m}}_{R} = 0.382kg/s$

szerokość płyt – G = 0.3m

wysokość płyt – H = 0.6m

odległość między płytami – smp = 0.002m

grubość płyt – δp = 0.4mm

liczba płyt – np = 78

liczba kanałów po stronie czynnika chłodniczego – nzo = 38

liczba kanałów po stronie cieczy chłodzonej – nzg = 39

W wymienniku płytowym ciepło wymieniane będzie pomiędzy roztworem glikolu propylenowego (40%) a czynnikiem R134a. Parametry roztworu glikolu obliczono dzięki zastosowaniu równań zawartych w Conde M., „Thermophysical properties of brines”.


ρg

λg

cpg

μg

Prg

βg
kg/m3 W/(m∙K) J/(kg∙K) Pa∙s - 1/K
1041 0.417 3707 0.012 104 4.63∙10-4

Obliczenia współczynnika przenikania ciepła po stronie chłodzonego czynnika


$${\dot{m}}_{g} = \frac{Q_{o}}{c_{\text{pg}} \bullet (T_{g1} - T_{g2})} = \frac{36530}{3707 \bullet (1 - \left( - 2 \right))} = 3.285kg/s$$


Wg = mg • cpg = 3.285 • 3707 = 12180W/K


$$\varepsilon = \frac{T_{g1} - T_{g2}}{T_{g1} - T_{o}} = 0.375$$


NTU = −ln(1−ε) = 0.47


kA = NTU • Wg = 0.47 • 12180W/K

Wstępnie założono, że liczba Reynoldsa Re jest mniejsza niż 2300. W zakresie przepływu laminarnego do określenia współczynnika przejmowania ciepła po stronie czynnika odbierającego ciepło stosuje się wzór Hausena:


$$Nu = 3.66 + \frac{0.0668 \bullet Gz}{1 + 0.04 \bullet Gz^{2/3}}$$

gdzie:

Gz – liczba Graetza zadana równaniem:


$$Gz = Re \bullet Pr \bullet \frac{d_{h}}{L}$$


$$w_{g} = \frac{{\dot{m}}_{g}}{G \bullet s_{\text{mp}} \bullet \rho_{g} \bullet n_{\text{zg}}} = \frac{3.285}{0.3 \bullet 0.002 \bullet 1041 \bullet 39} = 0.135m/s$$


dh = 2 • smp = 2 • 0.002 = 0.004m


$$Re = w_{g} \bullet d_{h} \bullet \frac{\rho_{g}}{\mu_{g}} = 0.135 \bullet 0.004 \bullet \frac{1041}{0.012} = 48.38$$


L = H = 0.6m


$$Gz = Re \bullet Pr \bullet \frac{d_{h}}{L} = 48.38 \bullet 104 \bullet \frac{0.004}{0.6} = 33.6$$


$$Nu = 3.66 + \frac{0.0668 \bullet Gz}{1 + 0.04 \bullet Gz^{2/3}} = 3.66 + \frac{0.0668 \bullet 33.6}{1 + 0.04 \bullet {33.6}^{2/3}} = 5.243$$


$$\alpha_{g} = \frac{\lambda_{g}}{d_{h}} \bullet \text{Nu}_{g} = 547W/\left( m^{2} \bullet K \right)$$

Obliczenia współczynnika przenikania ciepła po stronie czynnika chłodniczego R134a

Parametry czynnika R134a obliczono stosując funkcji Props (CoolPropFluidProperties).

Przykład:


$$\rho_{o} = \text{FluidProp}\left( \mathrm{"}\mathrm{D","T}\mathrm{"}\mathrm{,}\mathrm{T}_{\mathrm{o}}\mathrm{,"}P"\mathrm{,}\mathrm{p}_{\mathrm{o}}\mathrm{,"R134a}\mathrm{"} \right) = 1318kg/m^{3}$$


ρo

λo

cpo

μo

ρopar
kg/m3 W/(m∙K) J/(kg∙K) Pa∙s kg/m3
1318 0.095 1322 0.00029 11.3


A1 = G • H • np = 0.3 • 0.6 • 78 = 14.04m2


$$q = \frac{Q_{o}}{A_{1}} = \frac{36530}{14.04} = 2602W/m^{2}$$


$$w_{o} = \frac{{\dot{m}}_{R}}{G \bullet s_{\text{mp}} \bullet \rho_{o} \bullet n_{\text{zo}}} = \frac{0.382}{0.3 \bullet 0.002 \bullet 1318 \bullet 38} = 0.013m/s$$


$$Bo = \frac{q}{w_{o} \bullet \rho_{o} \bullet r} = \frac{2602}{0.013 \bullet 1318 \bullet 91904} = 1.69 \bullet 10^{- 3}$$

gdzie:

r – ciepło parowania czynnika, kJ/(kg • K)


$$Pr = \frac{\mu_{o} \bullet c_{\text{po}}}{\lambda_{o}} = 4.061$$


$$\alpha_{L} = 0.023 \bullet \left\lbrack w_{o} \bullet \rho_{0} \bullet \left( 1 - x \right) \bullet \frac{d_{h}}{\mu_{o}} \right\rbrack \bullet Pr^{0.4} \bullet \frac{\lambda_{o}}{d_{h}}$$

gdzie:

x – średni stopień suchości pary, $x = \frac{x_{1} + x_{2}}{2} = \frac{0.5 + 1}{2} = 0.75$,

x1 – stopień suchości pary na wlocie do parowacza,

x2 – stopień suchości pary na wylocie z parowacza,


$$\alpha_{L} = 0.023 \bullet \left\lbrack 0.013 \bullet 1318 \bullet \left( 1 - 0.75 \right) \bullet \frac{0.004}{0.00029} \right\rbrack \bullet {4.061}^{0.4} \bullet \frac{0.095}{0.004} = 55.61W/(m \bullet K)$$


$$E = 1 + 3000 \bullet \text{Bo}^{0.86} + \left( \frac{x}{1 - x} \right)^{0.75} \bullet \left( \frac{\rho_{o}}{\rho_{o\text{par}}} \right)^{0.41}$$


$$E = 1 + 3000 \bullet \left( 1.69 \bullet 10^{- 3} \right)^{0.86} + \left( \frac{0.75}{1 - 0.75} \right)^{0.75} \bullet \left( \frac{1318}{11.3} \right)^{0.41} = 29.24$$


αo = E • αL = 29.24 • 55.61 = 1626 W/(m2K)

Obliczenia pola powierzchni wymiennika


$$k = \frac{1}{\frac{1}{\alpha_{g}} + \frac{\delta_{p}}{\lambda_{\text{Al}}} + \frac{1}{\alpha_{o}}} = \frac{1}{\frac{1}{547} + \frac{0.0004}{200} + \frac{1}{1626}} = 409W/\left( m^{2} \bullet K \right)$$


$$T_{\log} = \frac{\left( T_{g1} - T_{o} \right) - \left( T_{g2} - T_{o} \right)}{\ln\left( \frac{T_{g1} - T_{o}}{T_{g2} - T_{o}} \right)} = 6.383K$$


$$A = \frac{Q_{o}}{k \bullet T_{\log}} = \frac{36530}{409 \bullet 6.383} = 13.996m^{2}$$

Powierzchnia wymiany ciepła wynikająca z założeń równa była:


A1 = 14.04m2

Warunek A < A1 został spełniony, założenia konstrukcyjne są prawidłowe.

Wężownica – wymiennik w zbiorniku akumulacyjnym

wydajność cieplna wymiennika – Qc = 50000W

temperatura wody na wlocie do wężownicy – Tww1 = 67

temperatura wody na wylocie z wężownicy – Tww2 = 63

średnia temperatura wody w wężownicy – Tww = 65

różnica temperatury wody – Tww = Tww1 − Tww2 = 4

temperatura początkowa wody w zbiorniku – Tzb1 = 35

temperatura końcowa wody w zbiorniku – Tzb2 = 60

założona temperatura na ściance wężownicy – Twzw = 65

średnica zewnętrzna rury – dz = 42mm

grubość ścianki rury – δr = 1.7mm

średnica wewnętrzna rury – dw = 38.6mm

skok zwoju – h = 86mm

średnica wężownicy – Dsw1 = 0.8m

średnica zwoju – $D_{s1} = \sqrt{{D_{sw1}}^{2} + \left( \frac{h}{\pi} \right)^{2}} = 0.8m$

średnica wewnętrzna zbiornika – Dwzb = 0.99m

długość wężownicy – L = 51m

Głównym parametrem, którym operowano (podczas obliczeń – iteracja) jest długość wężownicy.


ρww

λww

cpww

μww

ρwz
kg/m3 W/(m∙K) J/(kg∙K) Pa∙s kg/m3
980 0.655 4187 0.00043 983

Obliczenia współczynnika wnikania ciepła po stronie wody płynącej w wężownicy

Postanowiono rozdzielić strumień masy wody między dwie wężownice (układ równoległy). Pozwoli to na znaczne ograniczenie długości obliczanego wymiennika i zmieszczenie go w zbiorniku.


$${\dot{m}}_{\text{ww}} = \frac{Q_{c}}{c_{\text{pww}} \bullet {T}_{\text{ww}} \bullet 2} = \frac{50000}{4187 \bullet 4 \bullet 2} = 1.493kg/s$$


$$A_{w} = \frac{\pi{d_{w}}^{2}}{4} = \frac{\pi \bullet 0.0386^{2}}{4} = 0.00117m^{2}$$


$$w_{\text{ww}} = \frac{{\dot{m}}_{\text{ww}}}{\rho_{\text{ww}} \bullet A_{w}} = \frac{1.493}{980 \bullet 0.00117} = 1.301m/s$$


$$Re = w_{\text{ww}} \bullet d_{w} \bullet \frac{\rho_{\text{ww}}}{\mu_{\text{ww}}} = 1.301 \bullet 0.0386 \bullet \frac{980}{0.00043} = 113500$$


$$Pr = \frac{c_{\text{pww}} \bullet \mu_{\text{ww}}}{\lambda_{\text{ww}}} = \frac{4187 \bullet 0.00043}{0.655} = 2.772$$


$$D = D_{sw1} \bullet \left\lbrack 1 + \left( \frac{h}{\pi D_{sw1}} \right)^{2} \right\rbrack = 0.801m$$


$$Nu = \frac{\frac{\xi}{8} \bullet Re \bullet Pr}{1 + 12.7 \bullet \left( \frac{\xi}{8} \right)^{2} \bullet \left( \Pr^{2/3} - 1 \right)}$$

gdzie:

ξ – współczynnik oporu


$$\xi = \frac{0.3164}{\text{Re}^{0.25}} + 0.03 \bullet \left( \frac{d_{w}}{D} \right)^{0.5} = \frac{0.3164}{113500^{0.25}} + 0.03 \bullet \left( \frac{0.0386}{0.801} \right)^{0.5} = 0.024$$

Ostatecznie liczb Nusselta jest równa:


$$Nu = \frac{\frac{0.024}{8} \bullet 113500 \bullet 2.772}{1 + 12.7 \bullet \left( \frac{0.024}{8} \right)^{2} \bullet \left( {2.772}^{2/3} - 1 \right)} = 559$$


$$\alpha_{w} = \frac{\lambda_{\text{ww}}}{d_{w}} \bullet Nu = \frac{0.655}{0.0386} \bullet 559 = 9499W/\left( m^{2} \bullet K \right)$$

Współczynnik wnikania ciepła po stronie wody znajdującej się w zbiorniku


A1 = πdzL = 0.042 • 51π = 6.73m2


$$n_{w} = \frac{A_{1}}{\pi^{2} \bullet d_{z} \bullet D_{s}} = \frac{6.73}{\pi^{2} \bullet 0.042 \bullet 0.8} = 20.28$$


Hc = (nw−1) • h = (20.28−1) • 0.086 = 1.658m


Acz = 0.5 • π • dz2 • nw = 0.5 • π • 0.0422 • 20.28 = 0.056m2


$$d_{D} = \frac{4 \bullet A_{\text{cz}} \bullet H_{c}}{A_{1}} = \frac{4 \bullet 0.056 \bullet 1.658}{6.73} = 0.055m$$


$$\beta = - 1 \bullet \left\lbrack \frac{\rho_{\text{wz}} - \rho_{\text{ww}}}{\rho_{\text{wz}} \bullet \left( T_{w2} - T_{\text{wzw}} \right)} \right\rbrack = - 1 \bullet \left\lbrack \frac{983 - 980}{983 \bullet \left( 63 - 65 \right)} \right\rbrack = 1.343 \bullet 10^{- 3}$$


$$\alpha = \frac{\lambda_{\text{ww}}}{\rho_{\text{ww}} \bullet c_{\text{pww}}} =$$


Wyszukiwarka

Podobne podstrony:
Obiegi pomp ciepła (1)
Pracownia Pomp Ciepła KOLOKWIUM Lepsza Wesja
Pracownia Pomp Ciepła KOLOKWIUM
Efektywność ekonomiczna Gruntowych Pomp Ciepła 5, Studia, Energetyka
16531 efektywnosc dolnych zrodel pomp ciepla
2 Analiza techniczno ekonomiczna zastosowania w systemach ogrzewania wolnostojących budynków mieszk
05 AZE Sprawność energetyczna pomp ciepła z wymiennikami typu
Instalacje pomp ciepła
06 AZE Sprawność pomp ciepła w funkcji temperatury górnego źródła ciepła
pomp ciepła karczmarczyk cennik
08 Elektrownie jądrowe obiegi
Odprowadzanie ciepła z podespołów komputera
wentylacja i rekuperacja ciepła
Wymiana Ciepla
Straty ciepla pomieszczen k
Efekt Cieplarniany
Instalacja urządzeń grzewczych i wymienników ciepła
5 Obiegi rzeczywiste

więcej podobnych podstron