Schemat pomiarowy
2. Wykorzystane wzory obliczeniowe:
∆p= ρm ∙ ∆h ∙ q qv= A∙Vsr
V = $\sqrt{\frac{2p}{\rho}}$ ρ0= $\frac{1}{R_{s}}\frac{1 + 0,622 \bullet \varphi \bullet \frac{p_{s}}{p - p_{s \bullet \varphi}}}{1 + \varphi \bullet \frac{p_{s}}{p - p_{s \bullet \varphi}}}$ ∙ $\frac{P}{T}$
A= $\frac{\pi({2r}^{\begin{matrix} 2 \\ ) \\ \end{matrix}}}{4}$ $\frac{V_{t}}{V_{\max}}$= ${(1 - \frac{r}{R}\ )\ }^{\frac{1}{2,1logRe - 1,9}}$
Re= $\frac{\rho_{0 \bullet V_{sr} \bullet (d \bullet 2)}}{\mu}$ p0 = 9,8065 ∙ 105 ∙ $\frac{e^{0,01028 \bullet T - \ \frac{7821,541}{T} + 82,86568}}{T^{11,48776}}$
T = 273,16 + t
y | r | ∆h | |
---|---|---|---|
mm | mm | mm | |
1 | 66 | 39 | 12 |
2 | 65 | 38 | 15 |
3 | 64 | 37 | 20 |
4 | 63 | 36 | 22 |
5 | 61,5 | 34,5 | 25 |
6 | 60 | 33 | 28 |
7 | 58,5 | 31,5 | 28 |
8 | 57 | 30 | 29 |
9 | 55 | 28 | 30 |
10 | 53 | 26 | 30 |
11 | 51 | 24 | 29 |
12 | 49 | 22 | 30 |
13 | 47 | 20 | 31 |
14 | 45 | 18 | 30 |
15 | 43 | 16 | 31 |
16 | 41 | 14 | 31 |
17 | 38 | 11 | 31 |
18 | 35 | 8 | 32 |
19 | 32 | 5 | 31 |
20 | 29 | 2 | 32 |
21 | 27 | 0 | 32 |
Stałe:
qm=1000kg/m3
to=20°C
po=998hPa
φ=49%
D=80mm
μ0=17,08·10-6
Rs=281,1 J/(kgK)
C=112
3.Przykłądowe obliczenia:
ps = 9,8065 ∙ 105 ∙ $\frac{e^{0,01028 \bullet 293,16 - \ \frac{7821,541}{T} + 82,86568}}{{293,16}^{11,48776}}$ ≈ 1877 Pa
ρ0= $\frac{1}{R_{s}}\frac{1 + 0,622 \bullet 0,49 \bullet \frac{1877}{99800 - 1877_{\bullet 0,49}}}{1 + 0,49 \bullet \frac{1877}{99800 - 1877_{\bullet 0,49}}}$ ∙ $\frac{99800}{293,16}$ ≈ 1,18
∆p = 1000 ∙ 0,012 ∙ 9,81 ≈ 118Pa
V = $\sqrt{\frac{2 \bullet 275}{2,75}}$ ≈ 14,13$\frac{m}{s}$ $\frac{V}{V_{\max}}$ = $\frac{21,58}{23,07}$ ≈ 0,94
$\frac{r}{R}\ $= $\frac{33}{40}\ $= 0,825 Vsr = $\frac{14,13 + 22,33 + 23,07}{4}$ ≈ 20,56
A= $\frac{3,14({2 \bullet 0,04}^{\begin{matrix} 2 \\ ) \\ \end{matrix}}}{4}$ ≈ 50,24 ∙ 10−4 qv = 50,24 ∙ 10−4 ∙ 20,56 ≈ 10,33∙10−2 $\frac{m}{s^{2}}$
𝝁 = 17,08 ∙ 10−6 ∙ $\frac{273 + 112}{293,16 + 112}$ ($\frac{{293,16}^{3/2}}{273})$ ≈ 0,00002
Re = $\frac{1,18\ \bullet 20,56\ \bullet 0,08}{0,00002\ }$ ≈ 107463
$\frac{V_{t}}{V_{\max}}$= ${(1 - 0,825)\ }^{\frac{1}{2,1log(107463) - 1,9}\ }$ ≈ 0,82