N 13ro

  1. Schemat pomiarowy

2. Wykorzystane wzory obliczeniowe:

∆p= ρm ∙ ∆h ∙ q qv= A∙Vsr

V = $\sqrt{\frac{2p}{\rho}}$ ρ0= $\frac{1}{R_{s}}\frac{1 + 0,622 \bullet \varphi \bullet \frac{p_{s}}{p - p_{s \bullet \varphi}}}{1 + \varphi \bullet \frac{p_{s}}{p - p_{s \bullet \varphi}}}$$\frac{P}{T}$

A= $\frac{\pi({2r}^{\begin{matrix} 2 \\ ) \\ \end{matrix}}}{4}$ $\frac{V_{t}}{V_{\max}}$= ${(1 - \frac{r}{R}\ )\ }^{\frac{1}{2,1logRe - 1,9}}$

Re= $\frac{\rho_{0 \bullet V_{sr} \bullet (d \bullet 2)}}{\mu}$ p0 = 9,8065 ∙ 105$\frac{e^{0,01028 \bullet T - \ \frac{7821,541}{T} + 82,86568}}{T^{11,48776}}$

T = 273,16 + t

y r ∆h
mm mm mm
1 66 39 12
2 65 38 15
3 64 37 20
4 63 36 22
5 61,5 34,5 25
6 60 33 28
7 58,5 31,5 28
8 57 30 29
9 55 28 30
10 53 26 30
11 51 24 29
12 49 22 30
13 47 20 31
14 45 18 30
15 43 16 31
16 41 14 31
17 38 11 31
18 35 8 32
19 32 5 31
20 29 2 32
21 27 0 32

Stałe:

qm=1000kg/m3

to=20°C

po=998hPa

φ=49%

D=80mm

μ0=17,08·10-6

Rs=281,1 J/(kgK)

C=112

3.Przykłądowe obliczenia:

ps = 9,8065 ∙ 105$\frac{e^{0,01028 \bullet 293,16 - \ \frac{7821,541}{T} + 82,86568}}{{293,16}^{11,48776}}$ ≈ 1877 Pa

ρ0= $\frac{1}{R_{s}}\frac{1 + 0,622 \bullet 0,49 \bullet \frac{1877}{99800 - 1877_{\bullet 0,49}}}{1 + 0,49 \bullet \frac{1877}{99800 - 1877_{\bullet 0,49}}}$$\frac{99800}{293,16}$ ≈ 1,18

∆p = 1000 ∙ 0,012 ∙ 9,81 ≈ 118Pa

V = $\sqrt{\frac{2 \bullet 275}{2,75}}$ ≈ 14,13$\frac{m}{s}$ $\frac{V}{V_{\max}}$ = $\frac{21,58}{23,07}$ ≈ 0,94

$\frac{r}{R}\ $= $\frac{33}{40}\ $= 0,825 Vsr = $\frac{14,13 + 22,33 + 23,07}{4}$ ≈ 20,56

A= $\frac{3,14({2 \bullet 0,04}^{\begin{matrix} 2 \\ ) \\ \end{matrix}}}{4}$ ≈ 50,24 ∙ 10−4 qv = 50,24 ∙ 10−4 ∙ 20,56 ≈ 10,33∙10−2 $\frac{m}{s^{2}}$

𝝁 = 17,08 ∙ 10−6$\frac{273 + 112}{293,16 + 112}$ ($\frac{{293,16}^{3/2}}{273})$ ≈ 0,00002

Re = $\frac{1,18\ \bullet 20,56\ \bullet 0,08}{0,00002\ }$ ≈ 107463

$\frac{V_{t}}{V_{\max}}$= ${(1 - 0,825)\ }^{\frac{1}{2,1log(107463) - 1,9}\ }$ ≈ 0,82


Wyszukiwarka

Podobne podstrony:
TWN 13RO DOC

więcej podobnych podstron