Wiadomości do zawodowego (inf)

Co to jest Magistrala?

- wewnętrzny system wymiany danych i poleceń między procesorem, pamięcią operacyjną i gniazdami rozszerzeń, w których znajdują się karty dodatkowych urządzeń. Starsze komputery były wyposażone w magistrale Local Bus i AT. Magistrala danych składa się z określonej liczby ścieżek mieszczących się na płycie głównej.

Front Side Bus (FSB) jest występującą w wielu architekturach komputerów PC magistralą łączącą CPU z kontrolerem pamięci (najczęściej zlokalizowanym w mostku północnym). Składa się ona z linii adresowych, linii danych oraz linii sterowania. Parametry FSB (liczba linii poszczególnych typów, częstotliwość) zależne są od zastosowanego procesora. Jego następcą dla platform Itanium i Xeon jest Intel QuickPath Interconnect.

Szyna danych (ang. data bus) – część magistrali odpowiedzialna za transmisję właściwych danych, w odróżnieniu od danych adresowych (za co odpowiedzialna jest szyna adresowa), czy sygnałów sterujących. Podział taki ma sens jedynie dla magistrali, w których taka część jest wydzielona, czyli na ogół dla magistrali równoległych.

Szerokość szyny danych (liczba linii danych, a więc równolegle przesyłanych bitów) oraz częstotliwość z jaką dane są na nią podawane (najczęściej jest to częstotliwość cyklu zegarowego magistrali) określa szybkość transmisji danych danej magistrali.

W bardziej złożonych systemach komputerowych, gdzie jest wiele różnych magistrali, może być również wiele szyn danych.

Przykładowo moduły pamięci DDR SDRAM stosowane obecnie w komputerach klasy PC używają 64-bitowej szyny danych, a dane są na nią podawane z częstotliwością dwukrotnie większą niż cykl zegara.

Procesor (ang. processor) nazywany często CPU (ang. Central Processing Unit) - urządzenie cyfrowe sekwencyjne potrafiące pobierać dane z pamięci, interpretować je i wykonywać jako rozkazy. Wykonuje on bardzo szybko ciąg prostych operacji (rozkazów) wybranych ze zbioru operacji podstawowych określonych zazwyczaj przez producenta procesora jako lista rozkazów procesora.

Procesory (zwane mikroprocesorami) wykonywane są zwykle jako układy scalone zamknięte w hermetycznej obudowie, często posiadającej złocone wyprowadzenia (stosowane ze względu na własności stykowe tego metalu). Ich sercem jest monokryształ krzemu, na który naniesiono techniką fotolitografii szereg warstw półprzewodnikowych, tworzących, w zależności od zastosowania, sieć od kilku tysięcy do kilkuset milionów tranzystorów. Połączenia wykonane są z metalu (aluminium, miedź). Ważnym parametrem procesora jest rozmiar elementów budujących jego strukturę. Im są one mniejsze tym niższe jest zużycie energii, napięcie pracy oraz wyższa częstotliwość pracy. Współczesne procesory używane w komputerach osobistych wykonywane są w technologii pozwalającej na uzyskanie elementów o rozmiarach mniejszych niż 45 nm, pracujących z częstotliwością kilku GHz. Według planów największych producentów procesorów, pod koniec roku 2010 powinny pojawić się procesory wykonane w technologii 32 nm. Fabryki procesorów muszą posiadać pomieszczenia o niezwykłej czystości, co jest bardzo kosztowne.

W funkcjonalnej strukturze procesora można wyróżnić takie elementy, jak:

Jedną z podstawowych cech procesora jest długość (liczba bitów) słowa, na którym wykonywane są podstawowe operacje obliczeniowe. Jeśli słowo ma np. 32 bity, mówimy że procesor jest 32-bitowy.

Innym ważnym parametrem określającym procesor jest szybkość z jaką wykonuje on program. Przy danej architekturze procesora, szybkość ta w znacznym stopniu zależy od czasu trwania pojedynczego taktu.

Do typowych rozkazów wykonywanych przez procesor należą:

Współcześnie większość procesorów posiada wielordzeniową budowę. Takie rozwiązanie pozwoliło na wyeliminowanie problemu ze wzrostem poboru energii i ciepła wraz ze zwiększaniem taktowania procesorów. Modelem który zapoczątkował ten trend był Intel Pentium D (niezbyt udana konstrukcja). Prawdziwym przebojem stał się dopiero Intel Core 2 Duo zbudowany na bazie architektury Conroe (65nm). Najszybsze dziś modele posiadają rdzeń taktowany zegarem 3,16 Ghz (C2D E8500). Wymieniony procesor oparto o najnowocześniejszą architekturę Penryn wykonanym w procesie technologicznym 45nm ( tj. odległość między tranzystorami wynosi 45 nanometrów).

Najgroźniejszy rywal Intela, czyli AMD, wypuścił własny model procesora dwurdzeniowego o nazwie Athlon 64 X2. Jednak potrafi on konkurować z przeciwnikiem jedynie w niższym segmencie cenowym.

Obie firmy mają w ofercie także modele czterodzeniowe (Quad Intela i Phenom AMD).Obecnie Intel prowadzi testy 80-rdzeniowego procesora.

Komputer oprócz procesora głównego (CPU) posiada procesory pomocnicze: obrazu (GPU), dźwięku, koprocesory arytmetyczne.

Procesor bywa też nazywany jednostką centralną (poprzez tłumaczenie ang. CPU, Central Processing Unit w sposób dosłowny) - to określenie przyjęło się jedynie w wąskim gronie informatyków. Część użytkowników jednostkę centralną kojarzy z handlowym terminem określającym jednostką systemową komputera złożoną z elementów takich jak procesor, płyta główna, karta rozszerzenia, pamięć operacyjna, dysk twardy zamkniętych we wspólnej obudowie, nie obejmującą takich urządzeń peryferyjnych jak monitor, klawiatura czy drukarka.

Schemat płyty głównej

Typy sieci  Sieci jako systemy rozwinęły się w dwóch kierunkach określanych przez odrębne kategorie sieci:

lokalne (LAN - Local Area Network), metropolitalne (MAN – Metropolitan Asrea Network), sieci rozległe (WAN - Wide Area Network)

Sieci LAN stosowane są do łączenia urządzeń, które znajdują się w niewielkiej odległości i mają zasięg lokalny. Sieci WAN służą do łączenia LAN-ów na znaczne odległości, czyli np. Internet lub MAN (Metropolitan Area Network) to kilka LAN -ów w obrębie miejskim. Pod względem sprzętowym każda sieć powinna zawierać następujące urządzenia: urządzenia do transmisji, urządzenia dostępowe, urządzenia do wzmacniania przesyłanego sygnału. Do urządzeń transmisyjnych zalicza się te, które umożliwiają komunikację pomiędzy jednostkami podłączonymi do sieci. Są to: karta sieciowa (adapter sieciowy, tzw. NIC - Network Interface Card), hub (koncentrator), switch (przełącznik), bridge (most) oraz   router (urządzenie trasujące)

Karta sieciowa jest urządzeniem wymaganym we wszystkich stacjach roboczych przyłączonych do sieci. Każda karta jest przystosowana tylko do jednego typu sieci (np. Ethernet.) i posiada niepowtarzalny numer  identyfikujący komputer w którym jest zamontowana. Przydziela go międzynarodowa instytucja pod nazwą Institute of Electrical and Eleectronics Engineers. Każdemu producentowi przypisuje ona odpowiedni kod i zakres liczbowy. Obecnie bardzo dynamicznie rozwijają się sieci bezprzewodowe.

Sieci lokalne (LAN)   Sieci lokalne posiadające wysoką przepustowość wykorzystywane mogą być jako szkielet sieci. Szkielet ten może wtedy łączyć komputery zapewniając zintegrowane równoległe i rozproszone środowisko obliczeniowe. W praktyce w sieciach takich korzysta się z okablowania miedzianego i światłowodów. Topologią takiej sieci może być szyna lub pierścień. Zarządzanie scentralizowane okazuje się tu nieprzydatne z powodu sposobu dostępu do nośnika. Sieci tego typu są powszechni stosowane w bardzo wielu zwłaszcza komercyjnych środowiskach. M.in. w małych i średnich firmach. Każdą się najłatwiej zrozumieć po rozłożeniu jej na czynniki pierwsze. Składniki sieci często dzielone są na warstwy zgodnie z wytycznymi referencyjnego modelu OSI. Warunkiem niezbędnym podziału sieci lokalnej  na warstwy jest poznanie dwóch jej atrybutów: sposobu dostępu do sieci oraz jej topologii. Metodologia opisuje tu sposób udostępniania  zasobów przyłączonych do sieci podczas gdy topologia odnosi się do sposoby organizacji koncentratorów i okablowania.

Sieci rozległe (WAN)  Sieci rozległe korzystają z routerów, protokołów routingu i urządzeń transmisji. Odpowiednio skonstruowane sieci rozległe dają możliwość połączenia sieci lokalnych bez względu na dzielące je odległości. Kluczowym zagadnieniem jest tu odpowiednie projektowanie, wdrażanie takich projektów i administrowanie tego typu sieciami. Administrowanie sieciami WAN wymaga zupełnie innych umiejętności niż w przypadku administrowania aplikacjami typu klient-serwer czy siecią lokalną. Technologie sieci rozległych oraz ich składników nieustannie zyskują na ważności. Kiedyś główna rola sieci WAN sprowadzała się do połączenie kilku sieci lokalnych. Obecnie ma to znaczenie drugoplanowe. Rozwój tych sieci skierowany został na obszary rozproszenia pewnych operacji lub funkcji i łączenia pod tym kątem sieci lokalnych. Sieci rozległe znacznie różnią się od mniejszych- lokalnych. Większość technologii wykorzystywanych w sieciach LAN powiązana jest ściśle ze standardami przemysłowymi. Natomiast sieci WAN to struktury wieloskładnikowe, zbudowane przy użyciu różnych technologii - zarówno standardowych jak i bardzo specyficznych. Najtrudniejszym etapem budowania sieci WAN jest dopasowanie tych wszystkich technologii w sposób który umożliwi realizację zasadniczych wymagań użytkownika.

Do technologicznej bazy sieci rozległych zalicza się:

Każda z powyższych kategorii dysponuje szeroką gamą dostępnych technologii.

Topologie fizyczne

Topologia magistrali

Topologia pierścienia

Topologia podwójnego pierścienia

Topologia gwiazdy

Topologia rozszerzonej gwiazdy

Topologia hierarchiczna

Topologia siatki

Topologie sieci LAN.

Typ sieci opisuje sposób, w jaki przyłączone są do sieci zasoby są udostępniane. Zasobami tymi mogą być klienci, serwery lub inne urządzenia, pliki itd., które do klienta lub serwera są przyłączone. Zasoby te udostępniane są na jeden z dwóch sposobów: równorzędny i serwerowy.

Sieci równorzędne (każdy-z-każdym).

Sieć typu każdy-z-każdym obsługuje nieustrukturalizowany dostęp do zasobów sieci. Każde urządzenie w tego typu sieci może być jednocześnie zarówno klientem, jak i serwerem. Wszystkie urządzenia takiej sieci są zdolne do bezpośredniego pobierania danych, programów i innych zasobów. Każdy komputer pracujący w takiej sieci jest równorzędny w stosunku do każdego innego, w sieciach tego typu nie ma hierarchii. Korzystanie z sieci równorzędnej daje następujące korzyści:

•        Sieci te są w miarę łatwe do wdrożenia i w obsłudze. Są one zbiorem komputerów-klientów, obsługiwanych przez sieciowy system operacyjny umożliwiający udostępnianie równorzędne. Stworzenie takiej sieci wymaga jedynie dostarczenie i zainstalowanie koncentratora (lub koncentratorów) sieci LAN, komputerów, okablowania oraz systemu operacyjnego pozwalającego na korzystanie z tej metody dostępu do zasobów.

•        Sieci te są tanie w eksploatacji. Nie wymagają one drogich i skomplikowanych serwerów dedykowanych.

•        Sieci typu każdy-z-każdym mogą być ustanawiane przy wykorzystaniu prostych systemów operacyjnych, takich jak Windows for Workgroups, Windows98 czy Windows NT.

•        Brak hierarchicznej zależności sprawia, że sieci te są dużo bardziej odporne na błędy aniżeli sieci oparte na serwerach.

Korzystanie z sieci każdy-z-każdym niesie też za sobą ograniczenia, takie jak:

•        Użytkownicy tej sieci muszą pamiętać wiele haseł, zwykle po jednym dla każdego komputera wchodzącego w sieć.

•       Brak centralnego składu udostępniania zasobów zmusza użytkownika do samodzielnego wyszukiwania informacji. Niedogodność ta może być ominięta za pomocą metod i procedur składowania, przy założeniu jednak, że każdy członek grupy roboczej będzie się do nich stosować.

•        Nieskoordynowane i niekonsekwentne tworzenie kopii zapasowych danych oraz oprogramowania.

•        Zdecentralizowana odpowiedzialność za trzymanie się ustalonych konwencji nazywania i składowania plików.

Mniejsza jest również wydajność tego typu sieci, czego przyczyną jest wielodostępność każdego z komputerów tworzących sieć równorzędną. Komputery standardowe, z jakich zwykle składa się sieć każdy-z-każdym, przeznaczone są bowiem do użytku jako klienci przez pojedynczych użytkowników, w związku z czym nie są najlepiej dostosowane do obsługi wielodostępu. Za względu na to, wydajność każdego komputera postrzegana przez jego użytkowników zmniejsza się zauważalnie zawsze, gdy użytkownicy zdalni współdzielą jego zasoby. Pliki i inne zasoby danego hosta są dostępne tylko na tyle, na ile dostępny jest dany host. W przypadku, gdy użytkownik wyłączy swój komputer, jego zasoby są niedostępne dla reszty komputerów znajdujących się w sieci.

Sieci oparte na serwerach.

Sieci oparte na serwerach wprowadzają hierarchię, która ma na celu zwiększenie sterowalności różnych funkcji obsługiwanych przez sieć w miarę, jak zwiększa się jej skala. Często sieci oparte na serwerach nazywa się sieciami typu klient-serwer. W sieciach klient-serwer zasoby często udostępniane gromadzone są w komputerach odrębnej warstwy zwanych serwerami. Serwery zwykle nie mają użytkowników bezpośrednich. Są one komputerami wielodostępnymi, które regulują udostępnianie swoich zasobów szerokiej rzeszy klientów. W sieciach tego typu z klientów zdjęty jest ciężar funkcjonowania jako serwery wobec innych klientów. Sieci oparte na serwerach są dużo bezpieczniejsze niż sieci równorzędne. Przyczynia się do tego wiele czynników. Po pierwsze bezpieczeństwem zarządza się centralnie. Korzyścią wynikającą z centralizacji zasobów jest fakt, że zadania administracyjne, takie jak tworzenie kopii zapasowych, mogą być przeprowadzane stale i w sposób wiarygodny. Ponadto sieci oparte na serwerach charakteryzują się większą wydajnością wchodzących w jej skład komputerów, ze względu na kilka czynników. Po pierwsze - z każdego klienta zdjęty jest ciężar przetwarzania żądań innych klientów. W sieciach opartych na serwerach każdy klient musi przetwarzać jedynie żądania pochodzące wyłącznie od jego głównego użytkownika. Przetwarzanie to jest wykonywane przez serwer, który jest skonfigurowany specjalnie do wykonywania tej usługi. Zwykle serwer cechuje się większą mocą przetwarzania, większą ilością pamięci i większym, szybszym dyskiem twardym niż komputer-klient. Dzięki temu żądania komputerów-klientów mogą być obsłużone lepiej i szybciej.

Łatwą sprawą jest również zmienianie rozmiarów sieci serwerowych, czyli ich skalowania. Niezależnie od przyłączonych do sieci klientów, jej zasoby znajdują się bowiem zawsze w jednym, centralnie położonym miejscu, Zasoby te są również centralnie zarządzane i zabezpieczane. Dzięki tym zabiegom wydajność sieci jako całości nie zmniejsza się wraz ze zwiększeniem jej rozmiaru.

Jednak i ta sieć ma swoje ograniczenie, którym jest ponoszenie dużych kosztów związanych z zainstalowaniem i obsługą tego rodzaju sieci. Przede wszystkim jest to związane z większymi kosztami sprzętu i oprogramowania, związane z zainstalowaniem dodatkowego komputera, którego jedynym zadaniem jest obsługa klientów. Również koszty obsługi sieci opartych na serwerach są dużo wyższe. Wynika to z potrzeby zatrudnienia wyszkolonego pracownika specjalnie do administrowania i obsługi sieci. W sieciach każdy-z-każdym każdy użytkownik odpowiedzialny jest za obsługę własnego komputer, w związku z czym nie potrzeba zatrudniać dodatkowej osoby specjalnie do realizacji tej funkcji. Ostatnią przyczyną wyższych kosztów sieci serwerowej jest większy koszt ewentualnego czasu przestoju. W sieci każdy-z-każdym wyłączenie lub uszkodzenie jednego komputera powoduje niewielkie jedynie zmniejszenie dostępnych zasobów sieci lokalnej. Natomiast w sieci lokalnej opartej na serwerze, uszkodzenie serwera może mieć znaczny i bezpośredni wpływ na praktycznie każdego użytkownika sieci. Powoduje to zwiększenie potencjalnego ryzyka użytkowego sieci serwerowej.

Typy sieci lokalnych.

Topologie sieci LAN mogą być opisane zarówno na płaszczyźnie fizycznej, jak i logicznej. Topologia fizyczna określa geometryczną organizację sieci lokalnych. Topologia logiczna opisuje wszelkie możliwe połączenia między parami mogących się komunikować punktów końcowych sieci. Za jej pomocą opisywać można, które punkty końcowe mogą się komunikować z innymi, a także ilustrować, które z takich par mają wzajemne, bezpośrednie połączenie fizyczne.

Rodzaj topologii fizycznej wynika z rodzaju zastosowania technologii sieci LAN. W wyniku zastosowania koncentratorów powstały sieci o topologii pierścieni gwiaździstych. Podobnie wprowadzenie przełączania sieci LAN zmieniło sposób klasyfikowania topologii. Lokalne sieci przełączane, niezależnie od rodzaju ramki i metody dostępu, są topologicznie podobne. Pierścień jednostki dostępu do stacji wieloterminalowej, który do niedawna używany był do przyłączania - na poziomie elektroniki - wszelkich urządzeń do sieci Token Ring, nie pełni już tej funkcji. Zamiast niego każde z przyłączanych urządzeń ma własny minipierścień, do którego przyłączone są tylko dwa urządzenia: ono samo oraz port przełączania.

 

Topologia pierścienia.

Pierwszą topologią pierścieniową była topologia prostej sieci równorzędnej. Każda przyłączona do sieci stacja robocza ma w ramach takiej topologii dwa połączenia, po jednym dla każdego ze swoich najbliższych sąsiadów. Połączenie takie musiało tworzyć fizyczną pętlę, czyli pierścień. Dane przesyłane były wokół pierścienia w jednym kierunku. Każda stacja robocza działała podobnie jak wzmacniak, pobierając i odpowiadając na pakiety do nich zaadresowane, a także przesyłając dalej pozostałe pakiety do następnej stacji roboczej wchodzącej w skład sieci.

Pierwotna pierścieniowa topologia sieci LAN umożliwiała tworzenie połączeń równorzędnych między stacjami roboczymi. Połączenia te musiały być zamknięte; czyli musiały tworzyć pierścień. Pierścienie te zostały wyparte przez sieci Token Ring, które to korzystały z koncentratorów wzmacniających. Wyeliminowało to podatność sieci pierścieniowej na zawieszenia się przez wyeliminowanie konstrukcji każdy-z-każdym pierścienia. Sieci Token Ring mimo pierwotnego kształtu pierścienia, tworzone są przy zastosowaniu topologii gwiazdy i metody dostępu cyklicznego.

Topologia magistrali (szynowa).

Topologie magistrali wyróżnia to, że wszystkie węzły sieci połączone są ze sobą za pomocą pojedynczego, otwartego (umożliwiającego przyłączenie kolejnych urządzeń) kabla. Kabel ten obsługuje tylko jeden kanał i nosi on nazwę magistrali. Niektóre technologie oparte na magistrali korzystają z więcej niż jednego kabla, dzięki czemu obsługiwać mogą więcej niż jeden kanał, mimo że każdy z kabli obsługuje niezmiennie tylko jeden kanał transmisyjny. Oba końce magistrali muszą być zakończone opornikami ograniczającymi, zwanymi również często terminatorami. Oporniki te chronią przed odbiciem sygnału. Zawsze gdy komputer wysyła sygnał, rozchodzi się on w przewodzie automatycznie w obu kierunkach. Jeśli sygnał napotka na swojej drodze terminatora, to dochodzi do końca magistrali, gdzie zmienia kierunek biegu. W takiej sytuacji pojedyncza transmisja może całkowicie zapełnić wszystkie dostępne szerokości pasma i uniemożliwić wysyłanie sygnałów wszystkim pozostałym komputerom przyłączonym do sieci.

Typowa magistrala składa się z pojedynczego kabla łączącego wszystkie węzły w sposób charakterystyczny dla sieci równorzędnej. Kabel nie jest obsługiwany przez żadne urządzenia zewnętrzne. Zatem wszystkie przyłączone do sieci urządzenia słuchają transmisji przesyłanych magistralą i odbierają pakiety do nich zaadresowane. Brak jakichkolwiek urządzeń zewnętrznych, w tym wzmacniaczy, sprawia, że magistrale sieci lokalnych są proste i niedrogie. Jest to również przyczyna ograniczeń dotyczących odległości, funkcjonalności i skalowalności sieci.

Topologia gwiazdy.

Połączenie sieci LAN o topologii gwiazdy z przyłączonymi do niej urządzeniami rozchodzą się z jednego, wspólnego punktu, którym jest koncentrator. Każde urządzenie przyłączone do sieci w topologii gwiazdy może uzyskiwać bezpośredni i niezależny od innych urządzeń dostęp do nośnika. W tym celu urządzenia te muszą współdzielić dostępne szerokości pasma koncentratora. Sposób połączenia pokazano na rysunku.

Topologie gwiazdy stały się dominującym we współczesnych sieciach LAN rodzajem topologii. Są one elastyczne, skalowane i stosunkowo tanie w porównaniu z bardziej skomplikowanymi sieciami LAN o ściśle regulowanych metodach dostępu. Główną zaletą topologii gwiazdy jest to, że sieć może działać nawet, gdy jeden lub kilka komputerów ulegnie awarii. Ponieważ każdy komputer jest połączony tylko z koncentratorem, w wypadku awarii tego komputera dane mogą być przesyłane przez koncentrator pomiędzy pozostałymi komputerami. Podstawową wada tego rozwiązania jest to, że w wypadku awarii centralnego koncentratora cała sieć przestaje działać. Ponieważ cały ruch w sieci jest obsługiwany przez koncentrator, największe znaczenie ma odpowiednie zabezpieczenie tego komputera.

Topologie złożone.

Topologie złożone są rozszerzeniami i/lub połączeniami podstawowych topologii fizycznych. Topologie podstawowe są odpowiednie jedynie do bardzo małych sieci LAN. Skalowalność topologii podstawowych jest bardzo ograniczona. Topologie złożone tworzone są z elementów składowych umożliwiających uzyskanie topologii skalowalnych odpowiadających zastosowaniom.

Najprostszą z topologii złożonych otrzymać można w wyniku połączenia szeregowego wszystkich koncentratorów sieci. Taki sposób łączenia znany jest jako łańcuchowanie. Wykorzystuje ono porty już istniejących koncentratorów do łączenia ich z kolejnymi koncentratorami. Dzięki temu uniknąć można ponoszenie kosztów dodatkowych związanych z tworzeniem odpowiedniego szkieletu. Małe sieci LAN mogą być zwiększane (skalowane dodatnio) przez łączenie koncentratorów w łańcuchy (łańcuchowania ich). Łańcuchy stanowiły alternatywną, wobec sieci LAN pierwszej generacji, metodę przyłączania urządzeń.

DNS (ang. Domain Name System, system nazw domenowych) to system serwerów oraz protokół komunikacyjny zapewniający zamianę adresów znanych użytkownikom Internetu na adresy zrozumiałe dla urządzeń tworzących sieć komputerową. Dzięki wykorzystaniu DNS nazwa mnemoniczna, np. pl.wikipedia.org, może zostać zamieniona na odpowiadający jej adres IP, czyli 145.97.39.15

DHCP (ang. Dynamic Host Configuration Protocol - protokół dynamicznego konfigurowania węzłów) to protokół komunikacyjny umożliwiający komputerom uzyskanie od serwera danych konfiguracyjnych, np. adresu IP hosta, adresu IP bramy sieciowej, adresu serwera DNS, maski sieci. Protokół DHCP jest zdefiniowany w RFC 2131 i jest następcą BOOTP. DHCP został opublikowany jako standard w roku 1993.

W kolejnej generacji protokołu IP czyli IPv6 jako integralną część dodano nową wersję DHCP czyli DHCPv6. Jego specyfikacja została opisana w RFC 3315.

W sieci opartej na protokole TCP/IP każdy komputer ma co najmniej jeden adres IP i jedną maskę podsieci; dzięki temu może się komunikować z innymi urządzeniami w sieci.

Adres IP – liczba nadawana interfejsowi sieciowemu, grupie interfejsów (broadcast, multicast), bądź całej sieci komputerowej opartej na protokole IP, służąca identyfikacji elementów warstwy trzeciej modelu OSI - w obrębie sieci oraz poza nią (tzw. adres publiczny).

Adres IP nie jest "numerem rejestracyjnym" komputera - nie identyfikuje jednoznacznie fizycznego urządzenia - może się dowolnie często zmieniać (np. przy każdym wejściu do sieci Internet), ustalenie prawdziwego adresu IP użytkownika, do którego następowała transmisja w danym czasie jest możliwe dla systemu/sieci odpornej na przypadki tzw. IP spoofingu (por. man in the middle, zapora sieciowa, ettercap) - na podstawie historycznych zapisów systemowych.

W najpopularniejszej wersji czwartej (IPv4) jest zapisywany zwykle w podziale na oktety w systemie dziesiętnym (oddzielane kropkami) lub rzadziej szesnastkowym bądź dwójkowym (oddzielane dwukropkami bądź spacjami).

IP a pozostałe warstwy

W przeciwieństwie do adresu sprzętowego (MAC; warstwa druga modelu OSI) adres IP nie musi identyfikować jednoznacznie urządzenia ani w czasie, ani fizycznie (szczególnie, jeśli nie należy on do zakresu publicznego – jest adresem podlegającym translacji, bądź jest przydzielany dynamicznie). Protokół komunikacyjny IP pracuje w trzeciej warstwie modelu (warstwie sieciowej) niezależnie od rodzaju nośnika warstwy pierwszej. Jest trasowalny (routowalny), a więc umożliwia trasowanie (routing), które odbywa się właśnie w warstwie trzeciej. Aby zapewnić pomyślność komunikacji w tym protokole konieczne jest przyporządkowanie adresów IP interfejsom sieciowym urządzeń.

Z warstwą łącza danych, drugą warstwą rzeczonego modelu, komunikuje się zwykle za pomocą protokołów ARP i RARP. Pierwszy z nich informuje warstwę trzecią o adresie sprzętowym urządzenia, drugi umożliwia wskazanie adresu IP urządzenia przy znajomości adresu sprzętowego.

Protokół IP gwarantuje jedynie odnalezienie interfejsu lub grupy interfejsów sieciowych w pewnej sieci, jednak nie zapewnia poprawności transmisji danych. Współpracę z czwartą we wspomnianym modelu OSI warstwą transportową, która służy właśnie temu celowi, umożliwia m.in. protokół TCP w niej działający. Z tego powodu powstał protokół TCP/IP będący kombinacją m.in. tych dwóch protokołów.

Adresy IP stosuje się nie tylko w Internecie, ale również w sieciach lokalnych korzystających z TCP/IP. W pierwszym przypadku przypisywany jest on przez dostawcę internetu, w drugim o poprawne jego przypisanie dba zwykle jej administrator.

W celu zapewnienia jednoznaczności rozpoznawania się poszczególnych uczestników komunikacji stosuje się system odwzorowania unikatowej nazwy symbolicznej do adresów IP (protokół DNS), dzięki czemu użytkownicy Internetu nie muszą ich pamiętać i aktualizować. Np. adresowi 208.80.152.2 odpowiada obecnie interfejs sieciowy urządzenia/urządzeń (por. redundancja) obsługujących serwis Wikipedii. Aby korzystać z encyklopedii: wystarczy zapamiętanie łatwiejszej nazwy wikipedia.org, która tłumaczona jest na adres IP serwera przez serwery DNS (piąta warstwa modelu OSI nazywana warstwą aplikacji).

Obecnie w Internecie używane są adresy IP protokołu w wersji czwartej, IPv4. Zapotrzebowanie na adresy IPv4 stało się na tyle duże, że pula nieprzydzielonych adresów zaczyna się wyczerpywać, z tego powodu powstała nowa, szósta wersja protokołu – IPv6. Piąta wersja, IPv5 mająca rozszerzyć możliwości poprzedniczki nie zdobyła popularności, protokół ten znany jest szerzej pod angielską nazwą Internet Stream Protocol (pol. „protokoł strumieni internetowych”), skracaną do ST.

Zapis

Adresy IPv4 są 32-bitowymi liczbami całkowitymi. Tak więc adres serwisu działający pod adresem wikipedia.org to liczba 3 494 942 722, która w zapisie szesnastkowym ma postać D0 50 98 02. Adres w postaci szesnastkowej zapisywany jest zwykle jako D0:50:98:02, z której łatwo przekształcić go na łatwiejszą do zapamiętania formę dziesiętną, oddzielaną już kropkami: 208.80.152.2 (każdą z liczb szesnastkowych zamienia się na jej dziesiętny odpowiednik z zakresu 0-255). Adresy IP w postaci dwójkowej wykorzystywane są niezmiernie rzadko, najczęściej do wyznaczenia maski sieci lub maski podsieci, powyższy adres w postaci dwójkowej to

11001111 10001110 10000011 11101100.

Adresy IPv6 są 128-bitowymi liczbami całkowitymi, dlatego przykładowy adres sieci IPv6 w zapisie szesnastkowym, zgodnym ze specyfikacją Media:CIDR, która dotyczy również IPv4 (RFC1518, RFC1519, RFC1812), wygląda następująco:

3ffe:0902:0012:0000:0000:0000:0000:0000/48,

gdzie /48 oznacza długość pierwszego prefiksu wyrażoną w bitach (człony adresu grupuje się po 16 bitów i oddziela dwukropkiem).

Przyjmuje się, że najstarsze niepodane bity danej sekcji są zerami (np. :: oznacza :0000:), dlatego jego skrócona wersja to 3ffe:902:12::/48. Adres IPv6 w zapisie dziesiętnym byłby cztery razy dłuższy, a więc składałby się z 16 liczb dziesiętnych z zakresu 0-255.


Wyszukiwarka

Podobne podstrony:
Strona Tytułowa do Laborki, inf, I sem, Fizyka, Laborki
Nie wiadomo do czego to jest, IV rok Lekarski CM UMK, Nefrologia, Zaliczenie
Nie wiadomo do czego, Wzory z matmy, Szeregi
Plik Word a w nim przydatne wiadomości do nauki obsługi programu Matlab, Politechnika Rzeszowska
Nie wiadomo do czego, spektrometr, DEFINICJE
Nie wiadomo do czego, spektrometr, DEFINICJE
konfiguracja hrd do zawodów
Nie wiadomo do czego, moje, Grabowski Robert Inż
konspekt powtórzenie wiadomości do spr starożytna Grecja
SPRAWOZDANIE MINIKOSZ chłopcy, Treningi od J, Sobot, Marek, Nowe, Materiały dla nauczycieli, Warszta
zakres wiadomosci do egzaminu I rok WIMiR, Elektrotechnika, Sprawozdania elektrotechnika
zakres wiadomosci do egzaminu I rok WIMiIP ETI, bieżące
0 Najważniejsze wiadomości do powtórzenia przed egzaminem
Nie wiadomo do czego, Wyznaczanie sprawności grzejnika elektrycznego
powolanie do zawodowej sluz
zestaw pytań do testu z inf wykłady
Strona Tytułowa do Laborki, inf, I sem, Fizyka, Laborki

więcej podobnych podstron