13.11.2013 r.
Sprawozdanie z laboratorium Podstaw Fizyki
Nr.ćwiczenia:53
Temat: Prawo Ohma dla prądu przemiennego
Termin: Środa godz. 9.15-11.00
Nazwisko i Imię: Bury Marcin
Nr. Indeksu: 207560
Grupa: 2
1)Układ RC
f=1500Hz
Usk[V] | Isk[mA] | R[Ω] | Zc[Ω] | C[uF] | ΔC[nF] |
---|---|---|---|---|---|
2,043 | 6,94 | 300 | 300,27 | 8,40 | 0,59 |
4,19 | 14,00 | 300 | 300,27 | 8,40 | 0,59 |
6,46 | 21,59 | 300 | 300,27 | 8,40 | 0,59 |
9,04 | 30,14 | 300 | 300,27 | 8,40 | 0,59 |
11,02 | 36,71 | 300 | 300,27 | 8,40 | 0,59 |
13,07 | 43,50 | 300 | 300,27 | 8,40 | 0,59 |
15,00 | 49,90 | 300 | 300,27 | 8,40 | 0,59 |
17,05 | 57,70 | 300 | 300,27 | 8,40 | 0,59 |
19,46 | 64,70 | 300 | 300,27 | 8,40 | 0,59 |
22,03 | 73,20 | 300 | 300,27 | 8,40 | 0,59 |
Zw-zawada
C-pojemność kondensatora
Po użyciu funkcji regresji liniowej program wyliczył:
Zc= 0,300266KΩ=300,2 Ω
ΔZc=0,001474374kΩ=1,5Ω
ΔR=0,15Ω
Δf=0,5Hz
ΔC=$\sqrt{{(\frac{\partial C}{\partial Zc})}^{2}*\text{Zc}^{2} + {(\frac{\partial C}{\partial R})}^{2}*R^{2} + {(\frac{\partial C}{\partial f})}^{2}*f^{2}}$ =
ΔC=$\sqrt{\left( \frac{Z_{c}\left( Z_{c}^{2} - R^{2} \right)}{2\pi f\sqrt{Z_{c}^{2} - R^{2}}} \right)^{2}*\text{Zc}^{2} + \left( \frac{R\left( Z_{c}^{2} - R^{2} \right)}{2\pi f\sqrt{Z_{c}^{2} - R^{2}}} \right)^{2}*R^{2} + \left( \frac{1}{2\pi f^{2}\sqrt{Z_{c}^{2} - R^{2}}} \right)^{2}*f^{2}} = \sqrt{\left( \frac{300,27\left( {300,27}^{2} - 300^{2} \right)}{2\pi 1500\sqrt{{300,27}^{2} - 300^{2}}} \right)^{2}*{1,47}^{2} + \left( \frac{300\left( {300,27}^{2} - 300^{2} \right)}{2\pi 1500\sqrt{{300,27}^{2} - 300^{2}}} \right)^{2}*{0,15}^{2} + \left( \frac{1}{2\pi 1500^{2}\sqrt{{300,27}^{2} - 300^{2}}} \right)^{2}*{0,5}^{2}} =$
0,59nF
2)Układ RL
Rl3=(21,3±0,5)Ω
Usk[V] | Isk[mA] | R[Ω] | Zl[Ω] | L[mH] | L[µH] |
---|---|---|---|---|---|
2,015 | 6,39 | 300 | 323 | 3,51 | 87 |
4,08 | 12,75 | 300 | 323 | 3,51 | 87 |
6,01 | 18,75 | 300 | 323 | 3,51 | 87 |
8,02 | 25,00 | 300 | 323 | 3,51 | 87 |
10,30 | 32,05 | 300 | 323 | 3,51 | 87 |
12,87 | 40,00 | 300 | 323 | 3,51 | 87 |
15,00 | 46,60 | 300 | 323 | 3,51 | 87 |
17,00 | 52,70 | 300 | 323 | 3,51 | 87 |
19,02 | 59,00 | 300 | 323 | 3,51 | 87 |
20,93 | 65,00 | 300 | 323 | 3,51 | 87 |
Zw-zawada
L=indukcyjność cewki
Po użyciu funkcji regresji liniowej program wyliczył:
Zl= 0,3230033KΩ=323,00Ω
ΔZl= 0,000207kΩ=0,21Ω
ΔR=0,15Ω
Rl=21,3Ω
ΔRl=0,5Ω
Δf=0,5Hz
ΔL=$\sqrt{\left( \frac{\partial L}{\partial ZL} \right)^{2}*\text{Zl}^{2} + \left( \frac{\partial C}{\partial R} \right)^{2}*R^{2} + \left( \frac{\partial C}{\partial f} \right)^{2}*f^{2\ } +}\ \left( \frac{\partial C}{\partial Rl} \right)^{2}*\text{Rl}^{2} = \ $
=$\sqrt{\left( \frac{Z_{l}}{2\text{πf}\sqrt{Z_{l}^{2} - ({R + R_{l})}^{2}}} \right)^{2}*\text{Zl}^{2} + \left( \frac{{- R - R}_{l}}{2\text{πf}\sqrt{Z_{l}^{2} - ({R + R_{l})}^{2}}} \right)^{2}*R^{2} + \left( \frac{- \sqrt{Z_{l}^{2} - ({R + R_{l})}^{2}}}{{2\text{πf}}^{2}} \right)^{2}*f^{2\ } +}\ \left( \frac{{- R - R}_{l}}{2\text{πf}\sqrt{Z_{l}^{2} - ({R + R_{l})}^{2}}} \right)^{2}*\text{Rl}^{2} = \sqrt{\left( \frac{323}{2\pi 1500\sqrt{323^{2} - ({300 + 21,3)}^{2}}} \right)^{2}*{0,21}^{2} + \left( \frac{- 300 - 21,3}{2\text{πf}\sqrt{323^{2} - ({300 + 21,3)}^{2}}} \right)^{2}*{0,15}^{2} + \left( \frac{- \sqrt{323^{2} - ({300 + 21,3)}^{2}}}{{2\pi 1500}^{2}} \right)^{2}*{0,5}^{2\ } +}\ $
${+ \left( \frac{- 300 - 21,3}{2\pi 1500\sqrt{323^{2} - ({300 + 21,3)}^{2}}} \right)}^{2}*{0,5}^{2}$=0,00008700H≈87µH
3)Układ RLC
Rl3=(21,3±0,5)Ω
Usk[V] | Isk[mA] | R[Ω] | Zawada[Ω] | Zw1[Ω] | Zw[Ω] |
---|---|---|---|---|---|
2,018 | 6,42 | 300 | 321,515 | 321,11 | 11 |
4,00 | 12,60 | 300 | 321,515 | 321,11 | 11 |
6,02 | 18,90 | 300 | 321,515 | 321,11 | 11 |
8,08 | 25,28 | 300 | 321,515 | 321,11 | 11 |
10,01 | 31,30 | 300 | 321,515 | 321,11 | 11 |
12,06 | 37,70 | 300 | 321,515 | 321,11 | 11 |
14,10 | 44,00 | 300 | 321,515 | 321,11 | 11 |
16,00 | 49,90 | 300 | 321,515 | 321,11 | 11 |
18,55 | 57,90 | 300 | 321,515 | 321,11 | 11 |
20,60 | 64,20 | 300 | 321,515 | 321,11 | 11 |
LRC
Usk[V] | Isk[mA] | R[Ω] | Zawada[Ω] | Zw1[Ω] | Zw[Ω] |
---|---|---|---|---|---|
2,021 | 6,43 | 300 | 321,515 | 321,11 | 11 |
4,01 | 12,60 | 300 | 321,515 | 321,11 | 11 |
6,02 | 18,90 | 300 | 321,515 | 321,11 | 11 |
8,08 | 25,28 | 300 | 321,515 | 321,11 | 11 |
10,01 | 31,30 | 300 | 321,515 | 321,11 | 11 |
12,06 | 37,70 | 300 | 321,515 | 321,11 | 11 |
14,10 | 44,00 | 300 | 321,515 | 321,11 | 11 |
16,00 | 49,90 | 300 | 321,515 | 321,11 | 11 |
18,55 | 57,90 | 300 | 321,515 | 321,11 | 11 |
20,60 | 64,20 | 300 | 321,515 | 321,11 | 11 |
Zw1=$\sqrt{{(R + \text{Rl})}^{2} + {(2*\pi*f*L - \frac{1}{2*\pi*f*C})}^{2}}$=$\sqrt{{(321,3)}^{2} + {(2*3,14*1500*0,0351* - \frac{1}{2*\pi*1500*0,0000084})}^{2}}$=321,11Ω
$\text{Zw}1 = \sqrt{({\frac{\partial Zw1}{\partial R})}^{2}}*R^{2} + {(\frac{\partial Zw1}{\partial Rl})}^{2}*\text{Rl}^{2} + ({\frac{\partial Zw1}{\partial C})}^{2}*C^{2} + {(\frac{\partial Zw1}{\partial L})}^{2}*L^{2}$ =
=$\sqrt{{(\frac{R + Rl}{\sqrt{\left( R + R_{l} \right)^{2} + (2\pi\text{fl} - \frac{1}{2\pi\text{fC}})^{2}}})}^{2}*R^{2} + {(\frac{Rl + R}{\sqrt{\left( R + R_{l} \right)^{2} + (2\pi\text{fl} - \frac{1}{2\pi\text{fC}})^{2}}})}^{2}*\text{Rl}^{2} + {(\frac{- \frac{l}{{2c}^{2}} - \frac{1}{\pi^{2}f^{2}C^{3}}}{\sqrt{\left( R + R_{l} \right)^{2} + (2\pi\text{fl} - \frac{1}{2\pi\text{fC}})^{2}}})}^{2}*C^{2}}$
$\sqrt{{(\frac{4*\pi^{2}f^{2}l - \frac{l}{c}}{\sqrt{\left( R + R_{l} \right)^{2} + (2\pi\text{fl} - \frac{1}{2\pi\text{fC}})^{2}}})}^{2}*L^{2}}\text{\ \ \ \ \ }$=$\text{\ \ }\sqrt{\begin{matrix} \left( \frac{300 + 21,3}{\sqrt{\left( 300 + 21,3 \right)^{2} + (2\pi 1500*0,00084 - \frac{1}{2\pi 1500*0,0351})^{2}}} \right)^{2}*{0,15}^{2} + \left( \frac{21,3 + 300}{\sqrt{\left( 300 + 21,3 \right)^{2} + (2\pi 1500*0,00084 - \frac{1}{2\pi 1500*0,0351})^{2}}} \right)^{2}*{0,5}^{2} + \\ {(\frac{- \frac{l}{{20,0351}^{2}} - \frac{1}{\pi^{2}1500^{2}{0,0351}^{3}}}{\sqrt{\left( 300 + 21,3 \right)^{2} + (2\pi 1500*0,00084 - \frac{1}{2\pi 1500*0,0351})^{2}}})}^{2}*{0,000000059}^{2} \\ \end{matrix}}$
$\sqrt{{(\frac{4*\pi^{2}1500^{2}*0,0351 - \frac{l}{0,00084}}{\sqrt{\left( 300 + 21,3 \right)^{2} + (2\pi 1500*0,00084 - \frac{1}{2\pi 1500*0,00084})^{2}}})}^{2}*{0,000087}^{2}}$=10,67=11Ω
Po użyciu funkcji regresji liniowej program wyliczył:
Zw= 0,32151526KΩ≈321,52Ω
ΔZw= 0,000207kΩ≈0,21 Ω
Zawada= 321,52Ω
Zw± ΔZw = (321±11)Ω
4)15 kHz RLC
Usk[V] | Isk[mA] | Zawada[Ω] |
---|---|---|
2,00 | 0,17 | 2056 |
4,00 | 0,60 | 2053 |
6,00 | 1,66 | 2053 |
8,00 | 2,70 | 2053 |
10,00 | 3,75 | 2053 |
12,00 | 4,75 | 2053 |
14,00 | 5,75 | 2053 |
16,03 | 6,72 | 2053 |
18,00 | 7,67 | 2053 |
20,00 | 8,60 | 2053 |
22,00 | 9,56 | 2053 |
5).Pawo Ohma dla prądu przemiennego układu RlC jest słuszne ponieważ Zawada RLC jest zbliżona do Zw1 i nie wykracz poza granicę błędu,policzonego z różniczki zupełnej.
Przy pomiarze prądu nie ma znaczenia w jakiej kolejności połączymy elementy układu szeregowego RLC,ponieważ rezystancja wypadrowa będzie zawsze taka sama.
W układzie RLC dla częstotliwości 15 KHz nie sprawdzimy słuszności prawa Ohma ponieważ nie znamy wartości pojemności kondensatora oraz indukcyjności Cewki,a są to wartości zależne od częstotliwości.