materia y biofiza

Lampa rentgenowska - sztuczne źródło promieniowania rentgenowskiego, bańka próżniowa posiadająca zatopione elektrody: anodę i katodę w postaci wolframowej spirali (w tzw. jonowej lampie rentgenowskiej bańka wypełniona jest gazem pod ciśnieniem rzędu 10-3 Tr). Wysokie napięcie przyłożone do elektrod przyspiesza dodatnie jony (jonowa lampa rentgenowska) lub elektrony – które odrywają się z katody (elektronowa lampa rentgenowska), cząstki te bombardując elektrodę (odpowiednio: katodę - jonowa lampa rentgenowska lub anodę - elektronowa lampa rentgenowska) emitują promieniowanie hamowania, będące strumieniem kwantów promieniowania X o ciągłym widmie energetycznym.

Promieniowanie hamowania powstaje w wyniku oddziaływania cząstki z polami elektrostatycznymi jąder i elektronów w materii, z której wykonana jest anoda. Elektrony zderzając się z anodą są w niej hamowane, co powoduje powstawanie promieniowania X. Jednak 99% energii elektronów jest zamieniane w ciepło - stąd konieczność chłodzenia lampy. Chłodzenie zapewnia ciecz chłodząca lub wirująca anoda.

Anoda stała wykonana jest z płytki wolframowej wtopionej w blok miedziany. Wewnątrz tego bloku przepływa woda chłodząca. Anoda wirująca ma postać wolframowego talerzyka, którego oś obrotu napędza silnik elektryczny. Wirnik silnika znajduje się wewnątrz bańki lampy, uzwojenie stojana na zewnątrz. Dzięki wirowaniu dyskowej anody strumień elektronów pada na coraz to inny jej punkt, co zapobiega nadmiernemu nagrzewaniu się anody. Zdarzają się przypadki awarii silnika napędzającego i wtedy w bardzo krótkim czasie dochodzi do wytopienia się anody i nieodwracalnego uszkodzenia lampy.

Mechanizm skurczu:

Skurcz mięśnia – zmiana długości lub napięcia mięśnia, wywierająca siłę mechaniczną na miejsca przyczepu mięśnia lub wokół narządu otoczonego przez mięsień okrężny (np. mięsień okrężny ust). Poruszanie się organizmu możliwe jest dzięki synchronizowanemu skurczowi różnych grup mięśniowych.

W przypadku mięśni szkieletowych skurcz jest efektem potencjałów powstałych w mózgu w korze ruchowej. Skurcz mięśni gładkich oraz tkanki mięśniowej typu sercowego odbywa się bez udziału woli, jednak niższe elementy ośrodkowego układu nerwowego wywierają znaczny wpływ na powstawanie i modyfikację siły skurczu.

Skurcze mięśni dzielimy na:
A.

  1. izotoniczny - gdy zmienia się długość mięśnia przy stałym poziomie napięcia mięśniowego (wynikiem skurczu jest ruch)

  2. izometryczny - wzrasta napięcie mięśnia przy stałej długości (wynikiem nie jest ruch ale utrzymanie części ciała w stałym położeniu np. odkręcanie mocno przykręconych śrub, stanie, trzymanie ciężarów); skurcz ten nazywany jest także skurczem izotermicznym, ze względu na utrzymanie ciepłoty ciała (dreszcze)

  3. auksotoniczny - zmiana długości i napięcia mięśni (np. przy chodzeniu, bieganiu).

Fotoelektryczne zjawiska (efekty), ogół zjawisk spowodowanych oddziaływaniem substancji z promieniowaniem świetlnym. Związane jest z przekazywaniem energii fotonów pojedynczym elektronom.

Rozróżnia się fotoelektryczne zjawisko zewnętrzne (emisja elektronów z danej substancji pod wpływem światła; opuszczające substancję na skutek zjawiska fotoelektrycznego elektrony nazywa się fotoelektronami, a powstały przy ich uporządkowanym ruchu w zewnętrznym polu elektrycznym prąd - prądem fotoelektrycznym), fotoelektryczne zjawisko wewnętrzne (zmiana energetycznego rozkładu elektronów w stałych i ciekłych półprzewodnikach i dielektrykach spowodowana oddziaływaniem światła z substancją; przejawia się ono w zmianie koncentracji nośników prądu w ośrodku i w efekcie doprowadza do fotoprzewodnictwa lub zjawiska fotoelektrycznego w warstwie zaporowej), fotoelektryczne zjawisko zaworowe (powstawanie SEM na styku dwóch materiałów pod wpływem światła, np. w złączu p-n), zjawisko fotoelektryczne w gazach (fotojonizacja).

Zjawiska fotoelektryczne wykorzystywane są w fotoelementach. Badania fotoelektrycznego zjawiska zewnętrznego, którego wyjaśnienie wymagało wysunięcia postulatu kwantowej natury światła (A. Einstein), miało doniosłe znaczenie dla rozwoju fizyki. Zgodnie z zaproponowanym wtedy modelem energia padającego kwantu gamma (równa hν, gdzie h - stała Plancka, ν - częstotliwość fali świetlnej) jest przekazywana elektronowi zgodnie z równaniem hν = E+W, gdzie E - energia kinetyczna elektronu, W - tzw. praca wyjścia (energia potrzebna do wydostania się elektronu z substancji).

Comptona efekt (zjawisko), rozpraszanie wysokoenergetycznego promieniowania elektromagnetycznego (gamma lub rentgenowskiego) na słabo związanych elektronach.

W wyniku rozpraszania elektron otrzymuje część pędu i energii padającego kwantu promieniowania, przez co rozproszony kwant promieniowania ma mniejszą energię (większą długość fali).

Zjawiska tego nie można wyjaśnić na gruncie klasycznej fizyki. Z analizy procesu zderzenia kwantu promieniowania z elektronem, gdy oba obiekty traktowane są jako sprężyste kulki, można otrzymać wzór na wzrost długości fali promieniowania:

Δλ = 2πλo(1-cosθ),

gdzie λo tzw. comptonowska długość fali, θ - kąt rozproszenia. Jak widać Δλ zależy jedynie od czynników geometrycznych (nie zależy od energii), jest największa gdy cosθ = -1, a więc θ = 180° to znaczy, gdy padający foton rozproszy się do tyłu.

Uwzględnienie poprawki na energię wiązania elektronów w atomach zmienia przytoczony powyżej wzór dodając po prawej stronie równania czynniki Dλ2, wprowadza więc zależność od energii promieniowania (D-stała dla danego materiału). Poprawka ta jest nieistotna, gdy energia promieniowania jest znacznie większa od energii wiązania elektronów

Zjawisko tworzenia par elektron-pozyton polega na zamianie (konwersji) fotonu w parę: pozyton i  elektron, tj. . Proces ten możliwy jest jedynie, gdy energia fotonu przekracza pewną określoną wartość zwaną energią progową, co wynika z warunku spełnienia w tym procesie praw zachowania energii i pędu. Równoczesne spełnienie obu praw zachowania wymaga, by proces ten zachodził z udziałem "trzeciego ciała", jakim może być jądro atomowe lub elektron, nie może natomiast zachodzić w próżni. Przekaz energii i pędu zachodzi za pośrednictwem pola elektrostatycznego (kulombowskiego) jądra lub elektronu. Proces przebiega następująco:

Ze spełnienia praw zachowania wynika relacja określająca energię progową fotonu powyżej której może zachodzić zjawisko tworzenia par

(1.3.9)

gdzie jest energią fotonu, jest masą elektronu a masą jądra; - jest (oczywiście) prędkością światła. Ponieważ masa jądra jest tysiące razy większa niż masa elektronu, drugi człon we wzorze (1.3.1) można  zwykle zaniedbać wyrażając energię progową prostszym wzorem

(1.3.10a)

Oznacza to, że energia fotonu musi byś większa od energii odpowiadającej sumie mas pozytonu i elektronu, które to cząstki tworzone są w procesie konwersji. 

Kiedy proces produkcji par zachodzi w polu elektrostatycznym elektronu, to energia progowa zgodnie ze wzorem (1.3.9), gdzie zamiast masy jądra wstawiamy masę elektronu, jest większa i wynosi

(1.3.10b)

Proces ten jest jednak znacznie mniej prawdopodobny niż konwersja w polu jądra.

Procesem odwrotnym do tworzenia par jest proces anihilacji pozytonu z elektronem, w którym para pozyton-elektron zamienia się na dwa fotony, tj. na dwa kwanty promieniowania elektromagnetycznego.

Przekrój czynny na wytworzenie pary   przez foton o energii , w sąsiedztwie jądra o liczbie atomowej Z może być przedstawiony przybliżonym wzorem postaci

(1.3.11)

gdzie , a rośnie logarytmiczne z energią fotonu, a przy energiach bardzo dużych przestaje zależeć od energii. 

Promieniowanie cieplne, promieniowanie termiczne, promieniowanie temperaturowepromieniowanie elektromagnetyczne emitowane przez cząstki naładowane elektrycznie w wyniku ich ruchu termicznego w materii. Promieniowanie cieplne emitowane jest przez każdą materię o temperaturze wyższej od zera bezwzględnego.

Według mechaniki klasycznej atomy lub cząsteczki ciała o temperaturze powyżej zera bezwzględnego mają energię kinetyczną, która zmieniana jest w wyniku wzajemnych oddziaływań atomów i cząsteczek, a zmiany energii wynikają z przyspieszenia lub dipolowej oscylacji ładunków. Ta zmiana ruchu ładunków wytwarza promieniowanie elektromagnetyczne. W wyniku wzajemnych oddziaływań cząsteczek i atomów ustala się zależny od temperatury rozkład ich prędkości, z którego wynika rozkład emitowanego promieniowania.

Promieniowanie cieplne danego ciała w określonej temperaturze, jak zauważył Pierre Prévost, jeden z pierwszych badaczy promieniowania cieplnego, nie zależy od obecności innych ciał. W przypadku ciał stałych zależy natomiast głównie od ich powierzchni, np. inna będzie emisja, gdy ciało będzie chropowate, a inna gdy jego powierzchnia zostanie wypolerowana.

Konwekcjaproces przekazywania ciepła związany z makroskopowym ruchem materii w gazie, cieczy bądź plazmie, np. powietrzu, wodzie, plazmie gwiazdowej. Czasami przez konwekcję rozumie się również sam ruch materii związany z różnicami temperatur, który prowadzi do przenoszenia ciepła. Ruch ten precyzyjniej nazywa się prądem konwekcyjnym.

Przewodzenie ciepła – proces wymiany ciepła między ciałami o różnej temperaturze pozostającymi ze sobą w bezpośrednim kontakcie. Polega on na przekazywaniu energii kinetycznej bezładnego ruchu cząsteczek w wyniku ich zderzeń. Proces prowadzi do wyrównania temperatury między ciałami.

Przewodnictwem cieplnym nie jest przekazywanie energii w wyniku uporządkowanego (makroskopowego) ruchu cząstek.

Ciepło płynie tylko wtedy, gdy występuje różnica temperatur, w kierunku od temperatury wyższej do temperatury niższej. Z dobrym przybliżeniem dla większości substancji ilość energii przekazanej przez jednostkę powierzchni w jednostce czasu jest proporcjonalna do różnicy temperatur, co opisuje równanie różniczkowe Fouriera:

Parowanie (ewaporacja) – proces zmiany stanu skupienia, przechodzenia z fazy ciekłej danej substancji w fazę gazową (parę) zachodzący z reguły na powierzchni cieczy. Może odbywać się w całym zakresie ciśnień i temperatur, w których mogą współistnieć z sobą obie fazy.

Szybkość procesu parowania zależy od temperatury oraz ciśnienia parcjalnego pary nad cieczą. Gdy ciśnienie pary jest równe ciśnieniu pary nasyconej w danej temperaturze, to parowanie nie zachodzi. Stan też określa się jako równowagę między parowaniem a skraplaniem. Obniżenie ciśnienia oraz napływ gazu o mniejszym stężeniu pary, zwiększa szybkość parowania. Gdy ciśnienie pary nasyconej zrówna się z ciśnieniem otoczenia, wówczas proces parowania – zwany wówczas wrzeniem – zaczyna zachodzić również w całej objętości cieczy.

Parowanie zachodzi wtedy, gdy cząsteczka ma dostatecznie wysoką energię kinetyczną, by wykonać pracę przeciwko siłom przyciągania między cząsteczkami cieczy.

Procesem odwrotnym do parowania jest skraplanie pary.

Proces parowania z bezpośrednim przejściem pomiędzy fazą stała a parą nazywamy sublimacją.

Przemiany fazowe związane z parowaniem i sublimacją opisuje równanie Clapeyrona.

Podczas parowania w ciśnieniu znacznie niższym od ciśnienia krytycznego objętość substancji znacznie wzrasta.


Wyszukiwarka

Podobne podstrony:
Biofizyka, MATERIAŁY STUDIA - Pielęgniarstwo, I ROK - materiały, BIOFIZYKA
Wykłady-Biof, Lekarski, I, PIERWSZY ROK MEDYCYNA MATERIAŁY, BIOFIZYKA, Biofizyka
Optyka, Weterynaria UP lublin, I rok, Materiały, Biofizyka
BIOFIZYKA WZROKU, MATERIAŁY STUDIA - Pielęgniarstwo, I ROK - materiały, BIOFIZYKA
BIOFIZYKA GIEŁDA, Lekarski, I, PIERWSZY ROK MEDYCYNA MATERIAŁY, BIOFIZYKA
biofizykaII, Lekarski, I, PIERWSZY ROK MEDYCYNA MATERIAŁY, BIOFIZYKA
BIOFIZYKA 2012 4, Lekarski, I, PIERWSZY ROK MEDYCYNA MATERIAŁY, BIOFIZYKA, Biofizyka
Ćwiczenia 3, Biofizyka, IV Semestr, Materia i promieniowanie, ćwiczenia
Biofizyka egzamin, materialy farmacja, I rok, biofizyka
Powtorzenie mechanika, Wojskowo-lekarski lekarski umed łódź giełdy i materiały I rok, Biofizyka I ro
Wstepniaki- pytania- 2009-2010uzupełnione z roku 2012 umlub, materialy farmacja, I rok, biofizyka
Potencjały błonowe, Studia, Medycyna 1 rok, Biofizyka, Materialy
Biofizyka pytania z kola, Biotechnologia PWR, Semestr 5, Biofizyka - Wykład, Biofizyka - materiały
Semestr II - Materiały od RM, UJK.Fizjoterapia, - Notatki - Rok I -, Biofizyka, Materiały na zalicze
opracowane pytania z biofiz, materialy farmacja, I rok, biofizyka
BIOFIZYKA- rozwiązania, Biotechnologia PWR, Semestr 5, Biofizyka - Wykład, Biofizyka - materiały
biofizyka materialy id 87015 Nieznany

więcej podobnych podstron