Wzory Kramer

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$

$W = \begin{matrix} a1 & b1 \\ a2 & b2 \\ \end{matrix}$=a1b2-a2b2

$Wx1 = \begin{matrix} c1 & b1 \\ c2 & b2 \\ \end{matrix}$=c1b2-c2b1

$Wx2 = \begin{matrix} a1 & c1 \\ a2 & c2 \\ \end{matrix}$=a1c2-a2c1

$x1 = \frac{Wx1}{W}$

$x2 = \frac{Wx2}{W}$


Wyszukiwarka

Podobne podstrony:
matematyka podstawowe wzory i Nieznany
Fizyka 2 zadania, wzory
Fizyka Wzory I Prawa Z Objaśnieniami cz 1 [Jezierski, Kołodka]
9a Napiecia dotykowe wzory ozna Nieznany (2)
wniosek o wydanie odpisu aktu urodzenia, Wzory dokumentow
UMOWA PRZECHOWANIA, WZORY UMÓW-SKARBÓWKA,SĄD-ugody,skargi,zlecenia i inne
zalacznik 2, Wzory umów,próśb,pism,pitów,druków
Wzór rezygnacji z usługi NEOSTRADA z TELEWIZJĄ w T.P, Wzory
umowa agencyjna wzor, Dokumenty, różne pisma, Wzory pism
pozew o zachowek, WZORY UMÓW
wzory figur płaskich
UMOWA SPRZEDAŻY NA RATY, WZORY UMÓW-SKARBÓWKA,SĄD-ugody,skargi,zlecenia i inne
99, Prawo, WZORY PISM, Wzory Pism 2
Rozwiązanie umowy o pracę przez pracownika na mocy porozumienia stron, ADWOKAT DOMOWY, WZORY PISM, K
Pozew o separację, Wzory pism, Różne
106, Prawo, WZORY PISM, Wzory Pism 2
um najm garaz cz, WZORY PISM i UMÓW, Wzory Pism(1)

więcej podobnych podstron