I = FV − PV
I = PV * r * t
FV = PV(1 + r * t)
$$\text{PV} = \frac{\text{FV}}{(1 + r*t)}$$
FV = PV(1+r1*t1+r2*t2+…+rn*tn)
Rf=Rn(1-T) rf=Rn*0,81
I = FV − PV
I = PV * rt
FV = PV(1 + r)t
$$\text{PV} = \frac{\text{FV}}{{(1 + r)}^{t})}$$
FV = PV(1 + r1)t1*(1+r2t2)*…*(1+rntn)
$$r = \sqrt[t]{\frac{\text{FV}}{\text{PV}}}$$
$$t = \frac{\log\frac{\text{FV}}{\text{PV}}}{log(1 + r)}$$
FVCF=CF0(1+ro)n +CF1(1+r1)n-1+…+CFn(1+rn)n-n
FVCF=ΣCFt(1+rt)n-t
PVCF=CF0/(1+ko)0 +CF1/(1+k1)1+CFn/(1+kn)n
PVCF=ΣCFt/(1+kt)t
$$FVA = A\frac{{(1 + r)}^{\begin{matrix}
\ \\
n \\
\end{matrix}} - \ 1}{r}$$
$$FVA = A\left\lbrack \frac{{(1 + r)}^{\begin{matrix}
\ \\
n + 1 \\
\end{matrix}} - \ 1}{r} - \ 1 \right\rbrack$$
$$PVA = A\frac{{(1 + r)}^{\begin{matrix}
\ \\
n \\
\end{matrix}} - \ 1}{{r(1 + r)}^{n}}$$
$$PVA = A\frac{{(1 + r)}^{\begin{matrix}
\ \\
n \\
\end{matrix}} - \ 1}{{r(1 + r)}^{n - 1}}$$
PVP=P$\frac{1}{r}$
PVP=P+P$\frac{1}{r}$=P$\left( \frac{1 + r}{r} \right)$