ENERGIA JĄDROWA
Energia jądrowa to energia uzyskiwana z rozszczepienia bardzo ciężkich jąder (uran, pluton, tor) lub z syntezy lekkich pierwiastków (hel, lit). W obu przypadkach uwalniana jest energia wiązania jądrowego, która ma największą wartość dla jąder o średnich masach (np. przy rozszczepieniu 1 g uranu uzyskuje się tyle energii, co przy spaleniu ponad 2 t węgla).
Energię jądrową można uzyskiwać w sposób kontrolowany (dotychczas tylko energia z rozszczepienia - w reaktorach jądrowych) lub niekontrolowany (broń jądrowa, zarówno rozszczepieniowa, jak i termojądrowa).
Reakcja rozszczepienia
Polega na rozbiciu jądra uranu (izotop 235) na dwa mniejsze jądra o masach przypadkowych (najczęściej w stosunku około 2:3) z wydzieleniem 2 lub 3 neutronów. Uwolnione neutrony mogą wywołać następne reakcje rozszczepienia inicjując w ten sposób reakcję łańcuchową.
Elektrownie jądrowe
Energia jądrowa odgrywa duże znaczenie na świecie. W elektrowni jądrowej energię uzyskujemy nie ze spalania paliw kopalnych, lecz z rozszczepiania jąder atomowych. Kocioł zostaje tu zastąpiony reaktorem jądrowym, czyli urządzeniem, w którym wytwarzana jest energia jądrowa. W reaktorze przebiega kontrolowana reakcja łańcuchowa, podczas której rozszczepiane jest tyle jąder, ile potrzeba do wytworzenia energii elektrycznej. Obecnie elektrownie jądrowe produkują ponad 20% całkowitej światowej energii elektrycznej.
Opis działania elektrowni jądrowej
1. Obudowa bezpieczeństwa- jest podstawowym elementem konstrukcyjnym zapobiegającym uwolnieniu radioaktywnych gazów do atmosfery. Stanowi ona szczelną powłokę, zawierającą w sobie reaktor i jego układ chłodzenia, obliczoną na maksymalne ciśnienie awaryjne.
2. Budynek maszynowni- znajduje się tam turbina, generator i transformator.
3. Chłodnia kominowa pozostała ilość ciepła niewykorzystana przy produkcji energii jądrowej zostają odprowadzana
4. Basen wypalonego paliwa
5. Reaktor urządzenie służące do wytwarzania kontrolowanej reakcji łańcuchowej, tj. ciągłego pozyskiwania energii z rozszczepiania jąder atomowych.
6. Turbina służy to przetwarzania energii jądrowej w mechaniczną.
7. Zbiornik wody zasilającej.
8. Rurociągi wody chłodzącej.
9. Generator - wytworzona w turbinie energia mechaniczna jest przemieniana w energię elektryczną.
10. Transformator - wytworzona w generatorze energia elektryczna musi zostać przetworzona.
Reaktory są bezpieczne jedynie wtedy, gdy działają bez żadnych zakłóceń i awarii. W innym przypadku ludzie mieszkający blisko reaktora mogą być narażeni na niekorzystne działanie promieniowania.
Stopienie reaktora jądrowego w Czarnobylu-25 i 26 kwietnia 1986 Operatorzy reagowali błędnymi działaniami, a moc osiągnęła niezrównoważoną 100 - krotna zdolność wytwórczą reaktora. Paliwo uranowe uległo rozpadowi, przedarło się przez powłokę rur i weszło w kontakt z wodą chłodzącą. Potężna eksplozja pary wysadziła zbiornik reaktora oraz betonowe ściany hali. Pył promieniotwórczy uniósł się wysoko do atmosfery. Z uwolnionych radioaktywnych izotopów szczególnie niebezpieczne są jod 131 (okres połowicznego rozpadu 8 dni) oraz cez 137 (okres połowicznego rozpadu 30 lat), których połowa ilości znajdujących się w reaktorze dostała się w powietrze.
Skutki:
Na miejscu wypadku w wyniku eksplozji i pożaru 187 osób zapadło na ostrą chorobę popromienną, a 31 z nich zmarło. Zniszczony reaktor wyzwolił setki razy więcej promieniowania jonizującego niż zbombardowanie Hiroszimy i Nagasaki. Liczbę zmarłych w wyniku tragedii oszacowano na około 32 tysiące. Wśród chorych notuje się nie tylko więcej przypadków białaczki i złośliwych guzów, lecz także większą podatność na choroby układu krążenia oraz zwykłe infekcje: bronchit, zapalenie migdałków lub zapalenie płuc. Wdychanie rozproszonego w powietrzu jodu 131 spowodowało bezpośrednio po katastrofie napromieniowanie tarczycy. W latach 1981-1985 na skażonych później obszarach Ukrainy notowano około pięciu przypadków raka tarczycy rocznie. W ciągu 5 lat po katastrofie liczba ta wzrosła do 22, a w latach 1992-1993 notowano już średnio 43 przypadki rocznie. Są to nowotwory łatwo dające przerzuty. Warunkiem wyleczenia jest szybkie wykrycie guza i usunięcie całego gruczołu. Pacjent musi później już do końca życia uzupełniać niedobór hormonów tarczycy. Ludzie masowo zaczęli opuszczać skażone tereny. Miejsce katastrofy opustoszało. Uszkodzenia genetyczne polegają na zmianie struktury chromosomów wchodzących w skład komórek rozrodczych. Ich następstwem są mutację przejawiające się w zmianie dziedziczonych przez potomstwo cech ustroju. Powoduje to różnego rodzaju wady dziedziczne potomstwa w kolejnych pokoleniach.
Małe dawki promieniowania nie są bardzo groźne dla organizmu. Dawki powyżej 2 Sv powodują poważne konsekwencje zdrowotne, które mogą prowadzić nawet do śmierci.
ENERGIA JĄDROWA MA WIELE KORZYŚCI:
-Produkuje dużo więcej energii elektrycznej niż jakiekolwiek inne źródła naturalne:
Na przykład na dużym statku zużycie paliwa podczas podróży międzykontynentalnej wynosi 5000 ton. Przy wykorzystaniu paliwa atomowego wystarczy tylko 10 ton uranu, czyli 500 razy mniej.
- Normalnie pracująca elektrownia jądrowa nie emituje do środowiska żadnych pyłów i gazów spalinowych. Wprowadza do środowiska o wiele mniej substancji radioaktywnych niż elektrownia węglowa i to głównie w postaci gazów reagujących chemicznie: 85Kryptonu i 133Xenonu. Tymczasem klasyczne elektrownie węglowe emitują duże stężenia dwutlenku siarki, dwutlenku węgla i innych trujących substancji przyczyniając się do powstawania efektu cieplarnianego, wyniszczenia lokalnego ekosystemu i większej zachorowalności wśród ludzi.
- Promieniotwórczość możemy wykorzystywać dla ratowania zdrowia i życia ludzi naświetlając je w sposób zaplanowany i kontrolowany wyłącznie osoby, u których stwierdzono chorobę nowotworową. Do celów leczniczych stosuje się przede wszystkim silne źródła promieniowania g, jak: rad, kobalt i cez. Zaczęło się oczywiście od radu (Maria i Piotr Curie – 1902r.). Wielką jego wadą była zawsze wysoka cena. W 1923 roku 1 g radu kosztował 175 tysięcy dolarów, więc tylko nieliczne szpitale stać było na kupno dostatecznej ilości tego pierwiastka. Od czasu pierwszego praktycznego zastosowania radu aż do lat pięćdziesiątych w całym świecie wyprodukowano go zaledwie około 3 kilogramów.
- Przetwarzając energię jądrową w elektryczną można zbudować miniaturową baterię (zwaną baterią jądrową), wprawdzie o małej mocy, ale za to o długim czasie pracy. Stosuje się je w stymulatorach serca, dzięki którym już setki tysięcy ludzi na całym świecie, cierpiących na zaburzenia rytmu serca mogą normalnie żyć i pracować. Najczęściej wykorzystuje się w nich izotop plutonu 238Pu, wytwarzany w reaktorach jądrowych.
- Poddajemy się różnym badaniom, m.in. rentgenowskiemu zdjęciu płuc. Używane jest w nim promieniowanie X, które przechodząc przez ciało ludzkie pochłaniają w różny sposób kości i tkanki miękkie, stąd różny stopień zaczernienia kliszy fotograficznej w różnych miejscach. W ten sposób można na niej otrzymać obraz badanego narządu.
- Elektrownie jądrowe nie są zależne od występowania surowca - można je budować w miejscach, w których są akurat potrzebne.
ENERGIA JĄDROWA TO NIE TYLKO SAME KORZYŚCI:
- Energię jądrową wykorzystano do produkcji bomby atomowej. Po wybuchu w Hiroszimie i Nagasaki przyniosła śmierć wielu tysiącom ludzi jak również ogromne straty materialne.
- Społeczeństwo obawia się awarii reaktorów jądrowych. Na pierwszą myśl przychodzi wybuch w Czarnobylu w 1986 r. Skutkiem tego było skażenie ziemi na znacznym obszarze wykraczającym nawet poza granice byłego ZSRR i wiele ofiar w ludziach.
- W wyniku powstawania tej energii wysyłane jest promieniowanie, które ma niekorzystny wpływ na organizm człowieka, gdyż prowadzi do jonizacji cząsteczek organizmu. W wyniku tego w tkankach tworzą się pary jonów stanowiące wysoko aktywne chemiczne rodniki oraz prowadzą do uszkodzenia struktury dużych cząstek przez ich rozrywanie lub zlepianie. Prowadzi to do zmian biochemicznych i zmian strukturalnych komórek.
- W wyniku eksploatacji elektrowni atomowej powstaje zużyte paliwo, które jeszcze przez długi czas pozostaje aktywne. Należy je, więc przechowywać w odpowiednio przygotowanym miejscu aż do czasu, kiedy przestanie być szkodliwe dla środowiska. Ze względu na długi czas połowicznego rozpadu, proces ten jest długotrwały i wymaga, aby składowisko było dobrze zabezpieczone.
- Zagrożeniem jest także transport odpadów radioaktywnych zwłaszcza w sytuacji ewentualnego wypadku. Odpady transportowane są głównie koleją i drogą morską w pobliżu miejsc zamieszkanych przez ludzi i są w tym celu odpowiednio zabezpieczane. Czy to wystarczy by ludzie pozostawali bez obawy?
- Koszty inwestycyjne są ogromne. Wybudowanie elektrowni atomowej jest o połowę droższe od wybudowania nowoczesnej elektrowni węglowej. Ale... Okazuje się, że najdroższym paliwem energetycznym jest w tej chwili gaz ziemny. Przewiduje się, że będzie on drożał w przyszłości.
- Wytwarza więcej ciepła odpadowego niż energetyka konwencjonalna. By je odprowadzić, elektrownia jądrowa zużywa więcej wody chłodzącej niż konwencjonalna, ale różnica nie przekracza 50%.