Metody energetyczne, Studia, Wytrzymałość materiałów


Metody energetyczne

  1. Wstęp.

„Tradycyjna” wytrzymałość materiałów opiera się na ciągłym, jednorodnym modelu ciała sprężystego. Aby otrzymać rozwiązania problemów inżynierskich trzeba stoso-wać różne uproszczenia, pomijać pewne czynniki, stosować przybliżone metody roz-wiązywania równań.

Obliczenia wytrzymałościowe oparte na „klasycznych” metodach prowadzą w wie-lu przypadkach do bardzo skomplikowanych zależności. Trudno jest też sobie wy-obrazić ich stosowanie np. do prętów o zakrzywionej osi (łuków) - w tym przypadku metody klasyczne są nieprzydatne. Wprowadzenie do wytrzymałości pojęcia energii potencjalnej pozwala na sformułowanie stosunkowo prostych metod umożliwiających określanie przemieszczeń konstrukcji czy rozwiązywanie zadań statycznie niewyzna-czalnych. Dodatkową korzyścią jest zastosowanie prostych metod rachunkowych, wykorzystujących powszechnie znane metody analizy matematycznej (różniczki, całki). Metody wykorzystujące energię stanowią jedyne narzędzie pozwalające obliczać wytrzymałościowo ramy, łuki i zadania o wysokim stopniu statycznej niewyznaczal-ności. Metody oparte na energii wewnętrznych sił sprężystości, zwane metodami energetycznymi, stanowią powszechnie stosowane w praktyce narzędzie do obli-czeń wytrzymałościowych zarówno elementów konstrukcyjnych, jak i całych konstrukcji. Znaczenie metod energetycznych wzrasta z rozwojem możliwości obliczeniowych współczesnej techniki komputerowej.

Należy jednak pamiętać, że do prawidłowego stosowania metod energetycznych niezbędna jest odpowiednia znajomość wspomnianych „klasycznych” metod obliczeniowych.

Pojęcie energii potencjalnej wewnętrznych sił sprężystości (krótko - energii sprężystej) nawiązuje do zagadnień znanych z dynamiki. W podejściu tym wykorzystuje się analogię do definicji pracy ciał sztywnych - praca jest iloczynem siły na przesu-nięciu (drodze) i wyraża się za pomocą Nm (kNm - niutonometrów (dżuli J), kiloniu-tonometrów1).

  1. Układ Clapeyrona.

Układ sprężysty musi spełniać następujące warunki:

- materiał, z którego wykonany jest układ, zachowuje się zgodnie z

prawem Hooke'a czyli jest to materiał liniowo-sprężysty,

- w układzie nie ma takich warunków brzegowych, których istnienie

zależy od odkształcenia konstrukcji,

- temperatura układu jest stała,

- nie ma naprężeń i odkształceń wstępnych.

Układy, które spełniają wymienione warunki, nazywane są

układami Clapeyrona.

Podejście wykorzystujące energię sił sprężystości wymaga przyjęcia pewnego modelu, określanego jako układ Clapeyrona (sprężystość liniowa, możliwość stosowania zasady superpozycji, równowaga układu). Dla układu Clapeyrona można wprowadzić dodatkowe pojęcia, upraszczające dalszą analizę. Pojęciami tymi są:

Pręt uogólniony (pręt jednocześnie obciążony siłami osiowymi, siłami poprzecznymi, momentem skręcającym i momentem zginającym).

Siła uogólniona (rozciąganie, ścinanie, skręcanie, zginanie).

Przemieszczenie uogólnione (wydłużenia, ugięcia i obroty).

Uogólnienie powyższych pojęć pozwala na wyprowadzenie ogólnych zależności i przystosowanie ich do konkretnych praktycznych sytuacji.

3. Twierdzenie Clapeyrona.

Twierdzenie Clapeyrona mówi, że dla układu sprężystego, znajdującego się w

równowadze, praca sił zewnętrznych Lz równa jest energii potencjalnej sił

wewnętrznych (energii sprężystej):

Lz=V

0x01 graphic

4. Energia sprężysta.

Metody energetyczne są efektywnym narzędziem rozwiązywania złożonych problemów obliczeń wytrzymałościowych, polegających na wyznaczaniu przemieszczeń oraz rozwiązywaniu zadań wielokrotnie statycznie niewyznaczalnych. W oparciu o metody energetyczne można stosunkowo łatwo napisać programy komputerowe. Metody energetyczne są także podstawą metod elementów skończonych, współczesnego narzędzia szeroko obecnie stosowanego w projektowaniu konstrukcji inżynierskich wszelkiego typu.

W poniższej tabeli przedstawiono w uproszczonej formie zależności pozwalające

na zrozumienie energii sprężystej dla podstawowych modeli stosowanych w „klasycznej”

wytrzymałości materiałów.

0x01 graphic

Energia sprężysta pręta uogólnionego pod działaniem sił rozciągających (ściskających),

momentu skręcającego, momentu zginającego i sił ścinających wynosi:

0x01 graphic

Gdzie: A - pole powierzchni przekroju [cm2], L - długość pręta L [m],

E - moduł Younga [MPa], G - moduł Kirchoffa [MPa].

5. Twierdzenie Castigliano.

Dzięki wprowadzeniu uogólnionych pojęć sił i przemieszczeń można sformułować

zależności szeroko stosowane w obliczeniach wytrzymałościowych. Podstawowym

twierdzeniem w metodach energetycznych jest twierdzenie Castigliano (1873):

0x01 graphic

które mówi, że pochodna cząstkowa energii sprężystej układu względem siły uogólnionej

jest równa przemieszczeniu uogólnionemu odpowiadającemu tej sile.

Twierdzenie Castigliano jest stosowane do wyznaczania przemieszczeń

układów statycznie wyznaczalnych. Nie przysparza ono żadnych trudności w zadaniach,

w których poszukiwane przemieszczenie odpowiada rzeczywiście działającej

sile. W zadaniach mających na celu poszukiwanie przemieszczeń w przekrojach,

w których nie ma rzeczywistej siły, można dodać fikcyjne obciążenie odpowiadające

szukanemu przemieszczeniu. Po zróżniczkowaniu energii to fikcyjne obciążenie należy

przyrównać do zera.

Obciążenie układu siłami zewnętrznymi czynnymi powoduje powstanie w podparciach

(więzach) sił zewnętrznych biernych (reakcji). Dla podparcia sztywnego oraz

bez tarcia przemieszczenie odpowiadające reakcji podporowej Ri jest równe zeru.

Wykorzystując twierdzenie Castigliano, powyższe stwierdzenie można przedstawić w

postaci zależności:

0x01 graphic

6. Twierdzenie Menabre'a.

W układzie sprężystym wszystkie siły czynne i wszystkie siły bierne są związane

ogólnymi warunkami równowagi, wyrażonymi przez równania statyki. Powyższa zależność będzie prawdziwa tylko dla reakcji przyjętych za statycznie niewyznaczalne

(nadliczbowe). Mówi o tym twierdzenie Menabre'a (1857): w układzie liniowo-sprężystym sztywno podpartym pochodna cząstkowa energii sprężystej całego układu

względem reakcji podporowej statycznie niewyznaczalnej jest równa zeru.

Twierdzenie Menabre'a pozwala na rozwiązywanie układów statycznie niewyznaczalnych.

W układach z większą liczbą wielkości statycznie niewyznaczalnych

należy zastosować twierdzenie Menabre'a tyle razy, ile jest wielkości statycznie

niewyznaczalnych. Twierdzenie Menabre'a jest też zwane zasadą minimum energii

lub zasadą najmniejszej pracy Menabre'a.

7.Podsumownie.

Za pomocą twierdzenia Castigliano można wyznaczać przemieszczenia w układach statycznie wyznaczalnych. Twierdzenie Menabre'a pozwala na rozwiązywanie zadań statycznie niewyznaczalnych. Oba twierdzenia pozwalają na rozwiązywanie płaskich i przestrzennych konstrukcji typu ramy i łuki



Wyszukiwarka

Podobne podstrony:
Laborki 2, Studia, Wytrzymałość materiałów II, Test z laborek wydymalka, lab
L4 - pytania, Studia, Wytrzymałość materiałów II, lab4 wm2 studek
Doc1, budownictwo studia, wytrzymałość materiałów, Книга Обсл і рем
Spec. tech.(Skw.+Międz. ) poprawiona, budownictwo studia, wytrzymałość materiałów, Книга Обсл і рем
ZMIST, budownictwo studia, wytrzymałość materiałów, Книга Обсл і рем
Laborki 2, Studia, Wytrzymałość materiałów II, Test z laborek wydymalka, lab
Zginanie prętów silnie zakrzywionych, Studia, Wytrzymałość materiałów
Badanie twardości, budownictwo studia, wytrzymałość materiałów
stal 1, budownictwo studia, wytrzymałość materiałów
wytrzymałośc teoria, Politechnika Lubelska, Studia, Studia, Wytrzymałośc materiałów
Ugięcie ramy 1-sprawozdanie, Studia, wytrzymałość materiałów
Laborki 1, Studia, Wytrzymałość materiałów II, Test z laborek wydymalka, lab
rozwiazany test, POLITECHNIKA ŚLĄSKA Wydział Mechaniczny-Technologiczny - MiBM POLSL, Semestr 4, Stu
Vstup!, budownictwo studia, wytrzymałość materiałów, Книга Обсл і рем
lab 1 wm2, Studia, Wytrzymałość materiałów II
Laborki 1, Studia, Wytrzymałość materiałów II

więcej podobnych podstron