6, podstawy woiągów i kanalizacji


WYKLAD 6

Ad.2e) Ujmowanie wody gruntowej za pomocą zespołu studzien.

Rzeczywiste ujęcie dla miasta, osiedla składa się z wielu studzien, nawet kilkuset. Wydajność pojedynczej studni jest większa niż studni pracującej w zespole. Teoretyczna liczba studzien wyniesie:

0x01 graphic

Gdzie:

Qe - wydajność eksploatacyjna pojedynczej studni

Qdmax - maksymalne dobowe zapotrzebowanie na wodę przez miasto

Qzw - woda na potrzeby własne wodociągu

Qu - wymagana wydajność ujęcia

Każde ujęcie powinno posiadać studnie rezerwowe (kilka do kilkunastu studni). Rzeczywista liczba studzien wyniesie:

0x01 graphic

Gdzie:

ns - teoretyczna liczba studzien

nr - liczba studni rezerwowych

α - współczynnik rzeczywistej wydajności zespołu studzien (α = 1, jest to przypadek nieoddziaływania studni na siebie; α < 1, jest to przypadek wzajemnego oddziaływania studni na siebie).

Rozstaw studzien powinien zapewnić nieoddziaływanie studni na siebie lub oddziaływanie najmniejsze, a zależy on od promienia depresji R, oraz od szerokości pasa zasilania L i wynosi przeważnie 30 ÷ 200 m (tab. 1 i 2, rys. 71, 71).

Studnie należy rozmieszczać w miarę możliwości prostopadle do kierunku spływu wód gruntowych tak, aby maksymalnie wykorzystywać zasoby wód gruntowych.

Zespół studni współpracujących połączony jest rurociągami ze zbiornikami wody, skąd woda jest ponownie czerpana i dostarczana do dalszych urządzeń (w małych ujęciach typu wiejskiego może być tłoczona bezpośrednio do sieci, pod warunkiem spełnienia warunków sanitarnych i ilości dopuszczalnych substancji zawartych w wodzie).

Rodzaje rurociągów doprowadzających wodę:

- lewarowe

- ssące

- tłoczne

- grawitacyjne

Układ zbiorczy lewarowy stosowany jest na ujęciach, gdy zwierciadło wody podziemnej leży płytko pod terenem, a wytworzona depresja umożliwia zasysanie z wód podziemnych wody. Przewodem lewarowym woda spływa do studni zbiorczej pod ciśnieniem mniejszym niż atmosferycznym. Typowy układ lewarowy składa się z (rys. 43)

  1. Przewodu lewarowego, który układa się wzdłuż linii studzien w odległości 4 ÷ 5 m od linii studzien (zgodnie z kierunkiem przepływu wody) - poza obszarem ewentualnego przemieszczania się gruntu. Aby zapewnić pobór wody ze studzien głowica lewara powinna leżeć nie wyżej jak 7 m ponad najniższym dynamicznym zwierciadłem wody. Dla umożliwienia odpowietrzenia lewara (wydobywające się z wody powietrze i gazy pod wpływem obniżonego ciśnienia) należy go układać ze wzniosem w kierunku studni zbiorczej lub przepompowni. Wzniesienie to jest ograniczone wysokością umożliwiającą grawitacyjny przepływ wody przy ciśnieniu niższym od atmosferycznego. Im lewar dłuższy tym jednostkowe wzniesienie może być mniejsze i odwrotnie. Np. lewary krótkie wznoszą się ze wzniosem 5 ÷ 2 ‰, długie 1,0 ÷ 0,2 ‰. Długie lewary buduje się w kształcie schodków rys. 74 (załamują się i odpowietrzają kilkakrotnie). Wzdłuż lewara powstaje spadek linii ciśnienia, powodującego ruch wody od studni najbardziej odległej w stosunku do studni zbiorczej. W związku z tym wykorzystanie sprawności poszczególnych studzien jest nierównomierne. Studnia najdalej położona będzie miała najmniejszą wydajność (s1) a studnia najbliższa największą wydajność (s4). Wielkość depresji (s1 < s4) pokazuje rys. nr 73.

Aby wszystkie studnie pracowały równomiernie, zgodnie z ustaloną wydajnością i depresją, powinny być położone skośnie do kierunku spływu wód gruntowych, w taki sposób, aby statyczny spadek zwierciadła wody gruntowej w studniach odpowiadał mniej więcej spadkowi linii ciśnienia dynamicznego w lewarze rys. nr 75, 76, 77. Taki układ umożliwia zastosowanie większych prędkości przepływu w lewarze, które normalnie nie powinny przekraczać O,6 ÷ 0,7 m/s.

Połączenie lewara ze studnią powinno być wykonane pod kątem 45°. Lewary powinny spełniać następujące warunki:

2. Wyposażenia umożliwiającego eksploatację lewara - odpowietrzenie lewara - powietrze gromadzi się w głowicy lewara. Głowicę umieszcza się przeważnie w studni zbiorczej. Gromadzące się powietrze usuwane jest za pomocą pomp próżniowych, uruchamianych ręcznie lub automatycznie. Rys. 77, 78, 79, 80, 81, 82, 83

3. Studni zbiorczej - (rys. 83) Studnia zbiorcza stanowi zakończenie rurociągu lewarowego. Musi posiadać niezbędną pojemność i głębokość, która pozwala na łagodne uruchomienie układu lewarowego. Rurociągi lewarowe i ssawne powinny być zanurzone stale w wodzie. Studnie zbiorcze z reguły wykonywane są jako studnie zapuszczane.

Ad2d) Ujęcia za pomocą studzien z filtrami poziomymi.

Studnie te są w stanie zastąpić zespól studni wierconych. Najbardziej nadają się do zastosowania w warstwach wodonośnych o dużych zasobach. Zakłada się je pod zbiornikami wód powierzchniowych (rzeka, jeziora). Ujęcia te oparte są na wodzie infiltracyjnej. Filtry zakładane są tutaj poziomo (rys. 84). Głębokość posadowienia filtrów ok. 30 ÷ 40 m pod terenem. Woda infiltrowana powinna przebywać około 40 ÷ 50 dni w gruncie w celu nabrania cech wody gruntowej.

1) Ujęcie systemu Raneya składa się ze studni zbiorczej żelbetowej o średnicy 4 ÷ 5 m zapuszczonej w głąb warstwy wodonośnej; jest to studnia z zabetonowanym dnem; oraz szeregu rur filtrowych o średnicy 200 ÷ 250 mm wciśniętych poziomo promieniście lub wachlarzatowato w warstwę wodonośną (rys. 84, 85). Rury zakłada się na kilku poziomach (1 ÷ 3) długość rur filtrowych mniej więcej 30 ÷ 60 m, a niekiedy do 100 m.

Dolna cześć studni jest wzmocniona. Wzmocnienie to powinno przenieść ciśnienie powstające w czasie wciskania w filtrów w grunt wzmocnienie wykonuje się w postaci płaszcza stalowego od zewnętrznej i wewnętrznej z otworami o średnicy 400 mm, dla wprowadzenia w grunt wodonośnych rur filtrowych pozapuszczaniu studni na właściwą głębokość. Otwory podczas zapuszczania studni zabezpieczone są tulejami (krućcami) z zakończeniem od wewnątrz studni kołnierzami, a od zewnątrz kielichami z założonymi szczelnie dębowymi pokrywami. Pokrywy zamykają otwór w czasie opuszczania studni.

W tuleje te będą wprowadzone rury filtrowe, a uszczelnienie dławicowe zabezpieczy przed wpływaniem do studni nawodnionego pisaku. Rury stalowe grubościenne perforowane wciskane są bezpośrednio w grunt za pomocą pras hydraulicznych. W odcinku 2,4 m spawane ze sobą. Pierwszy odcinek rury zaopatrzony jest w tak zwany but (stalowa głowica stożkowa ułatwiająca wciskanie rur, a zarazem służy do usuwania z gruntu wodonośnego drobnego materiału przed osuwająca się rurą).

Materiał który przeszedł przez otwory w bucie odpływa specjalnie założona na czas wciskania wewnątrz rury filtrowej rurą o średnicy 50 mm do studni zbiorczej, skąd usuwany jest wraz z woda za pomocą pomp. Każda z nich wciśnięta w grunt posiada zamkniecie zasuwowe.

Objętość wypłukiwanego z gruntu materiału wynosi zwykle 3-krotną objętość wtłoczonej rury filtrowej i stanowi od 70 ÷ 80% uziarnienia warstwy wodonośnej. Na skutek tego wokół rury powstaje naturalny filtr o średnicy 1,8 ÷2,4 m, składający się z najdrobniejszych ziaren warstwy wodonośnej.

WYKLAD 7

Sieć wodociągowa - materiały i uzbrojenie sieci.

Sieć wodociągowa składa się z następujących elementów:

- przewody proste - prostki o przekroju kołowym

- kształtki - elementy do zmiany kierunku przepływu średnicy wykonania odgałęzień

- połączenia przewodów - pomiędzy prostkami i kształtkami

- uzbrojenie

Rodzaje rur i kształtek w zależności od materiału z którego są wykonane.

  1. Przewody żeliwne - zaletą tych rur jest ich taniość, trwałość. W normalnych warunkach mogą leżeć w ziemi 60 ÷ 100 lat, nieraz i więcej. Są odporne na związki nieorganiczne oraz organiczne. Wada tych rur jest kruchość, mała odporność na uderzenia i zginanie. Ścianki są stosunkowo grube, co zwiększa ich ciężar, a więc powstają trudności transportowe i montażowe. Ciężar rur ogranicza ich długość (4 ÷ 6 m) co z kolei daje dużą ilość złączy (im więcej złączy, tym więcej możliwych punktów nieszczelności i ewentualna strata wody). Rury i kształtki są znormalizowane. Normalne ciśnienie robocze 10 kg/cm2 (10 atmosfer). Przy ciśnieniu próbnym 16 kg/cm2. Produkowane są również rury o podwyższonym ciśnieniu roboczym wynoszącym 16 kg/cm2 (próbne 30 kg/cm2). Rury i kształtki w zależności od potrzeb powinny być zaizolowane od wewnątrz i z zewnątrz (rodzaj izolacji zależy od warunków gruntowo - wodnych, a głównie o agresywność wód gruntowych w stosunku do materiału, z którego wykonane są przewody oraz rodzaju płynu, jaki przepływa przez przewód). Powłoka izolacyjna powinna być elastyczna, odporna na odpryski, nie powinna zawierać szkodliwych dla zdrowia substancji oraz psujących smak i zapach wody. Nowoczesne rury wykonywane są z żeliwa sferoidalnego.

Izolowane są:

Rury ciśnieniowe dzielą się na kielichowe i kołnierzowe. Wykonywane są o średnicy 50 ÷ 2000 mm, inne wymiary są osiągalne na specjalne zamówienie.

Rury żeliwne kielichowe (rys.1, 2) - jeden koniec rury zaopatrzony jest w kielich a drugi koniec jest bosy. Połączenie polega na tym, że koniec bosy jednej rury wsuwamy w kielich drugiej rury i uszczelniamy sznurem konopnym i ołowiem lub jednym z materiałów zastępczych jak folia aluminiowa, cement, żelazo gąbczaste, preparaty siarkowe, bitumiczne lub inne wchodzące na rynek.

Sznur konopny smołowany ubity na 2/3 kielicha, pozostałą część powinien zajmować inny uszczelniacz.

W przypadku stosowania ołowiu lanego (na gorąco) na warstwę sznura smołowanego czarnego nakłada się warstwę sznura suchego (niesmołowanego tzw. białego). Uszczelnienie ołowiem lanym daje dużą trwałość połączenia i elastyczność. Podobne własności daje folia aluminiowa.

Nowe rury wykonane z żeliwa sferoidalnego są wytrzymałe, nieprzepuszczalne, uszczelniane za pomocą pierścieni gumowych.

Rury żeliwne kołnierzowe (rys. 3, 4) - na końcach tych rur umieszczone są kołnierze służące do połączenia tych rur. Uszczelnienie następuje poprzez włożenie uszczelki gumowej z przekładką płócienną lub klingielitem, następnie kołnierze ściąga się równomiernie śrubami (jak w kole samochodowym śruby dociągamy na przemian). Połączenie tego typu stosowane jest wszędzie tam, gdzie może zajść potrzeba szybkiej wymiany rury czy elementy uzbrojenia, np. w przepompowniach, w zbiornikach, tunelach itp. Należy unikać zakładania rur kołnierzowych bezpośrednio w gruncie, jeśli już jest to nieuniknione, np. Przy zasuwie, wówczas wskazane jest wykonanie tego połączenia w studzience. Są też inne możliwości zabezpieczenia połączenia kołnierzowego takie jak: bandażowanie i asfaltowanie, zastosowanie folii termokurczliwych, ale tego należy unikać.

Rury żeliwne ciśnieniowe o połączeniach elastycznych (rys. 5, 6) - umożliwiają szybki postęp robót oraz zastosowanie rur żeliwnych w warunkach, w których zbyt sztywne połączenie mogłoby być niekorzystne dla trwałości przewodu. Należą tutaj rury z połączeniem gwintowanym typu union dla rur o średnicy 5 ÷ 500 mm oraz połączeniem śrubowym dla rur 600 ÷ 1200 mm. Firmy produkujące armaturę i przewody dają cały wachlarz rozwiązań konstrukcyjnych, z których należy korzystać.

Kształtki żeliwne ciśnieniowe - mogą być kołnierzowe, kielichowe, kielichowo-kołnierzowe.

Kształtki umożliwiają:

  1. zmianę kierunku - kolana, łuki;

  2. wykonanie odgałęzienia - trójniki, czwórniki;

  3. zmianę średnicy z większej na mniejszą i odwrotnie - zwężki;

  4. połączenie dwóch rur o końcach bosych - nasuwki;

  5. zamknięcia przewodów - korki, pokrywy, ślepe kołnierze;

  6. połączenia rur kielichowych z kołnierzowymi - kieliszki, króćce;

  7. odwodnienie i odpowietrzenie - odwadniaki, odpowietrzniki;

  1. Przewody stalowe - przewyższają rury żeliwne pod względem wytrzymałości na działanie sił wewnętrznych i zewnętrznych (obciążenia dynamiczne i statyczne). Mają mniejszą grubość ścianek. Są lżejsze, dzięki temu mogą być wykonywane o długościach do kilkunastu metrów. Mają mniejszą liczbę połączeń, mogą być spawane. Ciśnienie robocze ponad 10 kg/cm2, stosowane są w sieci zewnętrznej, w gruntach słabych na terenach szkód górniczych, w syfonach (przejścia wodociągów pod torami kolejowymi, przez rzekę), na mostach. Wadą tych rur jest mała odporność na korozję, co wymaga starannej izolacji wewnętrznej i zewnętrznej (rurociąg powinien być ocieplony). Rury stalowe mogą być łączone na kielichy, kołnierze, spawanie. Mogą być stosowane połączenia typu Gibault lub Simplex (rys. 7, 8, 9)

  1. PCV (polichlorek winylu) - produkowane jako rury kielichowe i proste (bose). Bosy koniec rury jest wciskany w kielich drugiej rury, wewnątrz którego, w specjalnie uformowanym gnieździe pierścieniowym, włożona jest gumowa uszczelka. Ciśnienie do 10 atm. Mogą być stosowane do transportu wody do 60°C. Łączenie szybkie, długość do 12 m, duża gładkość (mały współczynnik szorstkości). Lekkie, łatwe w montażu.

  1. PE (polietylen) - są to rury bardzo lekkie. Zalety podobnie jak PCV.

  1. Rury azbesto-cementowe - spotykane w praktyce (ok. 80% przewodów wodociągowych). Zaletą tych rur jest gładkość, wadą - są mało odporne na obciążenia statyczne i dynamiczne.

  1. Przewody betonowe i żelbetowe - rury betonowe muszą mieć odpowiednią szczelność i wytrzymałość. Stosowane są przeważnie do ciśnieniowych (2 ÷ 4atm) jako przewody tranzytowe (średnica 1000 ÷ 1500 mm) wykonane metodą odśrodkową. Są mało odporne na działanie kwasów (środowisko wodno - gruntowe) jak również wstrząsów. Łączone na styk i nasuwkę lub kielichy. Uszczelnienie sznurem konopnym i zaprawą cementową albo pierścieniem gumowym (rys. 10).

WYKLAD 8

Projektowanie sieci. Układ przewodu w ulicy.

Położenie przewodu w ulicy powinno być dostosowane do warunków lokalnych. Podstawowymi materiałami wyjściowymi do projektowania są:

- plan zagospodarowania przestrzennego

- plan sytuacyjno - wysokościowy z aktualnym naniesionym uzbrojeniem nadziemnym i podziemnym terenu.

Projektując sieć wod-kan musimy przestrzegać pewnych zasad co do głębokości, jak i odległości od innych istniejących elementów uzbrojenia. Trasowanie przewodów powinno być ściśle zsynchronizowane z trasami przewodów innego rodzaju. Przewody wodociągowe powinny być układane z minimalnym spadkiem 0,5 ‰, pozwala to na odpowietrzenie sieci i jej odwodnienie w przypadku awarii (należy unikać układania przewodów poziomo). Przewody należy układać w miarę możliwości równolegle do nawierzchni ulicy zachowując jednakowe przykrycie (zależy ono od strefy przemarzania w danym rejonie) oraz należy uwzględnić obciążenia dynamiczne i statyczne.

Układ przewodów rozdzielczych

W każdej ulicy powinien znajdować się przewód rozdzielczy, do którego są podłączane połączenia domowe. Przewody wodociągowe rozdzielcze o średnicy do 250 mm umieszczane są sytuacyjnie pod chodnikiem, wzdłuż krawężnika, w odległości co najmniej 3 m od linii rozgraniczającej oraz 1 m od lica krawężnika. Głębokość przewodów rozdzielczych mieści się w granicach 1,4 m ÷ 1,8 m (zależnie od średnicy i strefy klimatycznej).

Układ przewodów magistralnych

Z uwagi na większe średnice wymaga większych odległości od linii rozgraniczającej, dla średnic do 500 mm odległość ta powinna wynosić 5 m, dla przewodów większych - ponad 500 mm odległość ta powinna wynosić 8 m oraz z reguły większą głębokość ze względu na konieczność przepuszczenia ponad magistralą innych przewodów tzn. rozdzielczych i połączeń domowych.

Głębokość przewodu magistralnego można obliczyć wg wzoru (rys. 1). Na rys. 2 i 3 przedstawione są przekroje poprzeczne ulicy z rozmieszczeniem różnego innego uzbrojenia.

Rozmieszczenie uzbrojenia

  1. Zasuwy - na przewodach rozdzielczych ustawiane są przy węzłach dla oddzielenia przewodów bocznych oraz ustawione są na długich odcinkach prostych przewodów. Zasuwy ze względów pożarowych należy rozmieszczać tak, aby dla wyłączenia danego odcinka sieci nie trzeba było zamykać więcej jak 5 zasuw oraz aby na wyłączonym odcinku nie było więcej jak 4 zasuwy.

Warunki rozmieszczenia zasuw węzłowych:

  1. Hydranty - rozmieszczenie wzdłuż ulic i dróg oraz na skrzyżowaniach lub w ich pobliżu.

Rozmieszczenie hydrantów wykonuje się w sposób następujący:

- najpierw należy je umieszczać w punktach skrzyżowań ulic, następnie między tymi punktami rozmieszcza się pozostałe hydranty; hydranty powinny swym zasięgiem obejmować cały obszar chroniony

- poza obszarami miejskimi odległość między hydrantami powinna być dostosowana do gęstości istniejącej planowanej zabudowy

Wydajność minimalna hydrantu zewnętrznego, przeciwpożarowego przy ciśnieniu nominalnym 0,2 MPa mierzony na zaworze hydrantowym podczas pobierania wody w zależności od jego średnicy nominalnej Dn powinna wynosić co najmniej:

  1. dla hydranty nadziemnego Dn= 80 ÷ 10 dm3/s

  2. dla hydrantu nadziemnego Dn= 100 ÷ 15 dm3/s przez okres 2 godzin

  3. dla hydrantu podziemnego Dn= 100 ÷ 10 dm3/s

  1. Odpowietrzniki, napowietrzniki, odwadniaki - zakładane są na sieci magistralnej, tranzytowej. W sieci rozdzielczej rolę tę spełniają hydranty przeciwpożarowe.

  1. Plany sytuacyjne i profile przewodów wodociągowych (rys. 4, 5, 6, 8) - plany powinny dokładnie określać położenie przewodu, jego trasę, uzbrojenie, zagłębienie, średnicę, spadki, naniesione skrzyżowania z innym rodzajem uzbrojenia (ewentualne kolizje), oznaczenia graficzne na rysunkach, urządzenia i sieć zewnętrzna wod-kan (PN-B-01700:1999);

  1. Węzły i trasy przewodów - węzły (rys.5) oznacza się numerami. Głębokość przewodów przy zasuwach i hydrantach oraz długości odcinków prostych między węzłami i kształtkami podajemy w [m]. przykładowy profil przewodu wodociągowego (rys. 6). Zaprojektowanie układu sieci w planie - nazywamy TRASOWANIEM. Do wykonania trasowania polegającego na nadaniu sieci kształtu geometrycznego zależy od ukształtowania terenu. Niezbędny jest plan warstwicowy miasta, osiedla czy dzielnicy w skali od 1:10 000 do 1:1000. Wybór skali uzależnia się od powierzchni projektowanego obszaru od planu zagospodarowania przestrzennego terenu z zaznaczeniem stref zabudowy, gęstości zaludnienia, rozmieszczenia zakładów np. przemysłowych itp. Dodatkowo na planach powinno być uwidocznione innego rodzaju uzbrojenie terenu. Trasę przebiegu projektowanej sieci należy uzgodnić z właścicielami innego rodzaju uzbrojenia, np. zakład energetyczny, gazownia, telekomunikacja, drogi i mosty, gospodarka cieplna, zieleń miejska, sanepid, ochrona środowiska. Samo trasowanie polega na wykreśleniu linii przewodów wzdłuż ciągów komunikacyjnych i ulic. Projektowanie sieci dla miasta czy osiedla rozpoczynamy od ustalenia sieci magistral stanowiących zasadniczy szkielet sieci, który podlega obliczeniu hydraulicznemu. Zaprojektowanie sieci rozdzielczej jest czynnością wtórną wykonywaną zazwyczaj w późniejszym okresie i według oddzielnych opracowań. Zasadnicze kierunki magistral powinny odpowiadać kierunkom, którymi będą płynęły największe ilości wody od źródeł zasilania do punktów odbioru. Przy trasowaniu należy mieć stale na uwadze:

WYKLAD 9

Zbiorniki - usytuowanie, konstrukcja i uzbrojenie zbiorników

Podstawowymi zadaniami zbiorników wodociągowych są :

- wyrównanie dostawy wody do odbiorców

- wyrównanie ciśnień

- gromadzenie zapasów wody

Całkowita objętość zbiornika może być obliczana dla potrzeb wodociągowych

0x01 graphic

V - objętość użytkowa zbiornika na cele bytowo - gospodarcze

Vppoż - objętość na cele przeciwpożarowe

Vm - objętość martwa zbiornika (wynikająca z konstrukcji zbiornika)

  1. Zbiorniki terenowe - są to zbiorniki budowane bezpośrednio w terenie. Mogą być dolnymi (zbiorniki ujściowe, zbiorniki przed pompami drugiego stopnia (zb. Wody czystej) lub zbiorniki strefowe, zbiorniki przed hydroforami itp.) lub zbiornikami górnymi wyrównującymi ciśnienie sieci (o ile układ topograficzny terenu na to pozwala)

  1. Rodzaje i kształt zbiorników:

Zbiorniki terenowe mogą być prostokątne lub okrągłe jedno- i wielokomorowe. Zalecane jest stosowanie zbiorników co najmniej 2-komorowych (z uwagi na pewność dostawy wody). Przykłady rozwiązań zbiorników (rys. 1,2,3)

  1. Głębokość wody w zbiornikach terenowych

zależy od kształtu zbiornika, konstrukcji ścian, położenia wysokościowego, warunków posadowienia itp. Głębokość nie powinna być zbyt duża, aby nie stwarzać zbyt dużych wahań zwierciadła wody, a więc i ciśnienia w sieci. Najmniejszy odstęp między najwyższym położeniem zwierciadła wody w zbiorniku a dolną krawędzią stropu (płyty, podciągu) powinna wynosić co najmniej 0,3 m. Układ rur dopływowych powinien zapewniać pionową oraz poziomą wymianę wody (w zbiorniku nie powinno być tzw. „martwych obszarów” - nieruchomych obszarów)

  1. Izolacja cieplna

Najczęściej tworzy się je za pomocą obsypki ziemnej. Ma ona chronić zbiornik przed wpływami temperatury zewnętrznej, zarówno w zimie jak i w lecie. Grubość obsypki zależy od strefy klimatycznej. Ma ona bezpośredni wpływ na wytrzymałość, a więc i konstrukcję stropu oraz na jego koszt. Wielkość jej nie powinna być przesadnie duża. Aby zmniejszyć grubość obsypki można zastosować inne materiały izolacyjne, np. beton porowaty, korek, wełny mineralne itp. (izolacja nie może być nawadniana wodami powierzchniowymi).

  1. Konstrukcja zbiornika

Obecnie zbiorniki terenowe buduje się przeważnie jako żelbetowe. Szczelność zbiorników otrzymuje się przez stosowanie betonu o możliwie największej szczelności (np. betony hydrotechniczne wraz odpowiednimi dodatkami uszczelniającymi beton). Szczelność zbiornika rośnie wraz z grubością ścian oraz przez pokrycie tych ścian np. wodoszczelnym tynkiem. Przed ewentualną agresywną wodą gruntową oraz przed wodą opadową zbiorniki są izolowane. Płyta główna zbiornika powinna mieć spadek 2-3%. Ściany wewnątrz powinny być gładkie i odpowiednio wyprawione. Dno zbiorników wykonuje się jako płaskie lub w postaci niecki o brzegach skośnych, nachylonych pod kątem 30°. Płaską płytę dna wykonuje się ze spadkiem 1-2% ku studzience zbiorczej dla łatwiejszego spłukania i czyszczenia zbiornika w okresie konserwacji.

e) Wyposażenie zbiorników

Zbiornik powinien być zabezpieczony przed przepełnieniem (przelew). Powinien być wentylowany, musi posiadać zabezpieczony dostęp do kontroli, czyszczenia i dezynfekcji. Komory zasuw zbiornika (rys. 4, 5 6). Wszystkie rurociągi powinny przechodzić przez komorę zasuw. Rurociągi zbiornika powinny być prowadzone na zewnątrz ścian i dna. Przejścia rurociągów przez ściany musza być wykonane starannie i szczelnie. Przykład typowych przejść (rys. 7, 8). Przykład rozwiązań projektowych zbiorników (rys. 10 - 14).

  1. Zbiorniki wieżowe - stosowane są gdy warunki terenowe nie pozwalają na stosowanie zbiorników terenowych. Zbiorniki te są kilkakrotnie droższe od terenowych.

    1. Rodzaje, kształt zbiorników wieżowych

Najczęściej spotykane są zbiorniki o przekroju kołowym, jedno lub dwukomorowe. Spotykane są też zbiorniki o przekroju kwadratowym i prostokątnym. Zbiorniki kwadratowe i prostokątne mają z reguły dno płaskie, zbiorniki o przekroju kołowym mogą mieć również dno płaskie (rys. 15a), kuliste lub stożkowe zawieszone (lub opuszczone) lub wspierające (podniesione rys. 15 b, c) oraz zbiorniki typu Intzego (rys. 15 d). zbiorniki te mogą być wykonane ze stali lub żelbetu. Pod względem statycznym najkorzystniejszym kształtem zbiornika jest kształt kulisty.

    1. Głębokość wody w zbiornikach wieżowych

Powinna być możliwie duża, by średnica zbiornika oraz wymiary konstrukcji podtrzymującej (nośnej) były jak najmniejsze. Głębokość wody przyjmuje się zwykle 5-8 m, większe głębokości mogą dawać za duże spadki ciśnienia przy próżnym zbiorniku. W zbiornikach cylindrycznych, o płaskim dnie, głębokość wody powinna równać się połowie średnicy zbiornika.

    1. Izolacja cieplna zbiorników wieżowych

Powinna być starannie wykonana ponieważ zbiorniki te są narażone na bezpośrednie działanie czynników atmosferycznych, a szczególnie temperatury zewnętrznej, tak w lecie jak i w zimie. Również narażone są rurociągi i uzbrojenie. Dla ochrony przed zbytnim nagrzaniem w lecie oraz ochłodzeniem w zimie stosuje się obudowę zbiornika lub zakłada się wprost na jego ściany izolację termiczną i przykrywa zbiornik dachem. Obudowa zbiornika może być wykonana np. z pustaków, cegły lub w postaci konstrukcji drewnianej, stalowej lub żelbetowej, ocieplonej materiałami izolacyjnymi. Między obudową a ścianą zewnętrzną zbiornika pozostawia się przestrzeń o szerokości ok. 1 m, która umożliwia kontrolę szczelności zbiornika oraz dostęp do jego wnętrza zwykle od góry (drabinką stalową zewnętrzną i wewnętrzną). Izolację cieplną wykonuje się np. z płyt korkowych i innych materiałów dostępnych na rynku (schemat obudowy rys.16)

    1. Konstrukcja zbiorników

Zależy od materiału użytego do budowy najczęściej wykonuje się zbiorniki żelbetowe zwykłe lub sprężone oraz stalowe. Zbiorniki żelbetowe mogą być monolitycznie powiązane z konstrukcją nośną lub mogą stanowić odrębną konstrukcję postawioną na konstrukcji nośnej i oddzieloną od niej dylatacją. Zbiorniki samodzielnej konstrukcji maja płaskie dno płytowe i ustawione są zwykle na płycie stropowej lub ruszcie żelbetowym konstrukcji nośnej (rys. 17 a). zbiorniki monolityczne związane z konstrukcją nośną mają dno wzmacniane żebrami krzyżującymi się gdy stoją na kilku słupach (rys. 17 b) lub żebrami ułożonymi promieniście (rys. 17 c). Najniższe zbiorniki wieżowe mogą mieć dno oparte na szeregu słupa i wykształcone jak w ustroju grzybkowym (rys. 17 d). Najkorzystniejszymi statycznie są dna typu Intzego, w którym poziome siły są zniesione, a pozostaje tylko siła pionowa (rys. 17 e). zalecane proporcje zbiornika typu Intzego (rys. 18). Zbiorniki stożkowe mogą zastąpić zbiorniki walcowe, ponieważ pojemność części górnej odwróconego stożka jest o wiele większa od pojemności części dolnej (rys. 20). Zbiorniki pierścieniowe (rys, 21)mają kształt specjalny. Budowane najczęściej są ze stali lub żelbetu.

    1. Konstrukcje nośne zbiorników wieżowych.Wykonuje się je najczęściej z muru, żelbetu lub stali.

WYKLAD 10

(drenażowe) - wo­­­dy drenażowe można odprowadzać do kanalizacji deszczowej lub ogólnospławnej (san nie!)

Na nieczystości płynne składają się ścieki gospodarcze (powstające z fekaliów odprowadzanych z ustępów spłukiwanych oraz wody zużyte na różne potrzeby higieniczne i gospodarcze zarówno w gospodarstwach domowych jak i w zakładach pracy, instytucjach użyteczności publicznej i usługowych. Ścieki przemysłowe są to odpływy wód zużytych do celów technologicznych na potrzeby bytowo-gospodarcze w zakładach przemysłowych. Wody opadowe (z dachów, placów, ulic) odprowadzane są do kanalizacji jako wody deszczowe lub w postaci tającego śniegu i lodu oraz wody z polewania i mycia ulic. Zespół budowli kanalizacyjnych składa się

Dążymy do grawitacyjnego spławiania ścieków. W niektórych przypadkach przy przeciążeniu sieci lub przy pokonywaniu dużych różnic wysokości kanały pracują pod ciśnieniem (przepompownie - przewody tłoczne rys nr 4).

Systemy kanalizacji

W zależnośći od zadań które ma spełniać kanalizacja rozróżniamy:

  1. Kanalizację pełną - odprowadzającą zarówno ścieki bytowo-gospodarcze, przemysłowe i wody opadowe

  2. Kanalizację częściową - odprowadza przeważnie tylko ścieki bytowo - gospodarcze i przemysłowe jako najbardzoej niebezpieczne pod względem sanitarnym

Kanalizacja deszczowa może obejmować swym zasięgiem tylko część miasta lub osiedla, pozostała część wód deszczowych odprowadzana jest po powierzchni terenu. Kanalizację pełną można analizować w zależności od systemu sieci do odprowadzenia ścieków i wód opadowych jako:

  1. Kanalizacje ogólnospławną (jednosieciowa, rys 1, 5), która charakteryzuje się tym że do odprowadzania ścieków bytowo-gospodarczych i przemysłowych oraz wód opadowych buduje się jedną sieć, dodatkowym uzupełnieniem sieci są tzw. Burzowce, którymi odprowadzany jest nadmiar wód deszczowych zmieszanych ze sciekami (ścieki rozcieńczone) bezpośrednio do odbiornika. Przekroje kanałów wymiarowane są wg spływów deszczowych liczonych z deszczów krótkotrwałych o dużym natężeniu i przyjętej częstotliwości pojawiania się. Kanały ogólnospławne pracują pełnymi przekrojami tylko w czasie intensywnych deszczów (150-170 dni w roku). W okresie bezdeszczowym kanałami płyną tylko ścieki bytowo-gospodarcze i przemysłowe wypełniając przekrój tylko częściowo. Pod względem sanitarnym kanalizacja ogólnospławna całkowicie spełnia swoje zadanie. Pod względem ekonomicznym jest najtańszym rozwiązaniem, ale wzrasta koszt oczyszczalni ścieków (rys-tab -kanał „jajowy” deszcz:ścieki 40:1!!!). Kanalizację ogólnospławną stosuje się w następujących warunkach miejscowych

- powierzchnia zabudowy jest duża i zwarta, a sposób zabudowy działek i ulic wyznacza duże współczynniki spływu.

- układ terenu mało urozmaicony, małe spady terenowe i różnokierunkowe, brak możliwości odprowadzenia wód opadowych po powierzchni terenu

- brak w terenie odbiorników wód opadowych (jezior, stawów, dolin, wąwozów, kotlin itp)

- w pobliżu miasta znajduje się odbiornik o przepływie gwarantującym dostateczne samooczyszczenie odprowadzanych do niego ścieków rozcieńczonych

  1. Rozdzielcza (rys 2,5) - w systemie rozdzielczym budowana jest podwójna sieć oddzielna do odprowadzenia ścieków i oddzielna do odprowadzenia wód opadowych. W sieci ściekowej przekroje kanałów wymiarowane są wg max sekundowych przepływów ścieków zwiększonych o ilość wód gruntowych infiltrujących do kanału oraz wód przypadkowych z powierzchni terenu oraz płukania sieci. Sieć sanitarna nie powinna pracować pod ciśnieniem a prędkości powinny być tak dobrane aby była zachowana możliwość samooczyszczenia się kanału. Wymiary kanałów deszczowych zbliżone są do kanałów sieci ogólnospławnych. Kanalizacja deszczowa pracuje okresowo tylko w czasie deszczów i odwilży. Oczyszczalnia wymiarowana jest wg ilości ścieków gospodarczych i przemysłowych. Koszty oczyszczalni w tym systemie są najmniejsze a eksploatacja najbardziej unormowana

  2. Kanalizacja półrozdzielcza (rys 3,5) - system dwusieciowy w którym stosuje się specjalne separatory do kierowania scieków deszczowych z pierwszej fazy opadu z kanałów deszczowych do kanałów odprowadzających ścieki bytowo-gospodarcze i przemysłowe, przez co osiąga się że odpływy sieci deszczowej do odbiornika są stosunkowo czyste. Ta kanalizacja jest najkosztowniejszą kanalizacją (rys 6) Oczyszczalnia jest wymiarowana na ilość ścieków nieoczyszczonych. Na rys 4 pokazany jest schemat sieci pompowo-grawitacyjnej.

Wybór systemu kanalizacji

System kanalizacji półrozdzielczej jest najbardzije uzasadniony pod względem sanitarnym i technicznym, pod względem ekonomicznym kanalizacja półrozdzielcza jest kanalizacją najkosztowniejszą spośród 3 systemów sieci kanalizacyjnej najbardziej narażona na zanieczyszczenia osadami (osadzanie na dnie kanału) jest sieć ogólnospławna, a zachowanie prędkości samooczyszczenia przy przepływie tlko scieków bytowo-gospodarczych i przemysłowych szczególnie w czasie pogody bezdeszczowej oraz w godzinach nocnych jest prawie niemożliwe. (tab rys 2 - zasada działania separatora). Systemy kanalizacji ogólnospławnej możńa stosować w dużych jednostkach osadniczych o zwartej zabudowie leżących na terenie bez wyraźnego ukierunkowania spadku w pobliżu odbiorników ścieków o znacznych przepływach miarodajnych więszych ja 5m^3/s jeżeli



Wyszukiwarka

Podobne podstrony:
Podstawy woiągów i kanalizacji 15.11.2007, STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanaliz
Podstawy woiągów i kanalizacji 22.10.2007. , STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanal
Podstawy woiągów i kanalizacji 29.10.2007. , STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanal
Podstawy woiągów i kanalizacji 29.11.2007, STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanaliz
11b, podstawy woiągów i kanalizacji
wodkan 08.10.2007 bobMOD2008(1), podstawy woiągów i kanalizacji
Podstawy woiągów i kanalizacji 06.12.2007, STUDIA, Polibuda - semestr IV, Podstawy Woiągów i Kanaliz
CAŁOSC OD W6 DO W10, podstawy woiągów i kanalizacji
pyt od Marty, IŚ Tokarzewski 27.06.2016, V semestr COWiG, WodKan (Instalacje woiągowo - kanalizacyjn
Pytania z 1., IŚ Tokarzewski 27.06.2016, V semestr COWiG, WodKan (Instalacje woiągowo - kanalizacyjn
WIK, IŚ Tokarzewski 27.06.2016, V semestr COWiG, WodKan (Instalacje woiągowo - kanalizacyjne), Wykla
pyt od Ani, IŚ Tokarzewski 27.06.2016, V semestr COWiG, WodKan (Instalacje woiągowo - kanalizacyjne)
pyt od Marty, IŚ Tokarzewski 27.06.2016, V semestr COWiG, WodKan (Instalacje woiągowo - kanalizacyjn

więcej podobnych podstron