img193

img193



D3. Podstawowe pojęcia teorii języków formalnych i automatów 193

t) -i-> 7 oznacza wyprowadzenie w gramatyce 0, tzn. istnieje taki ciąg

170, m.....Vk, że % = y, r)t - 7 oraz r)i —* »7<+i 6 P dla i = 0,1,..., k-1.

Oczywiście ——► jest zwrotnym przechodnim domknięciem —► .

Językiem generowanym przez gramatykę 0 nazywamy zbiór L(0) = {7 | 7 e Ey taki,że 5—*7}.

Zdefiniujmy teraz dogodną do analizy syntaktycznej podklasę gramatyk bezkontekstowych.

Dla A 6 Ew: first(A) = {a € E | A 7, 7 € £+ oraz 7 = ar)}. Tak więc, zbiór first dla nieterminala A zawiera wszystkie symbole, jakie mogą pojawić się na jego pozycji. Przykładowo, jeśli w gramatyce występują produkcje: A —* aB, A —► Cb, C —* eEa, to a, £7, e 6 firsi(A).

Niech 77 —> 7 będzie bezpośrednim krokiem wyprowadzającym w gramatyce bezkontekstowej takim, że

77 = 771.4772, 7 = »?i T-772 i A>reP.

Jeśli 777 6 Ef, to krok wyprowadzający nazywamy lewostronną kanoniczną generacją i oznaczamy 77 —* 7. Zwrotne i przechodnie domknięcie —£* nazywamy lewostronnym wyprowadzeniem i oznaczamy —j~*. Innymi słowy, lewostronnym wyprowadzeniem nazywamy takie wyprowadzenie, gdzie w każdym kroku produkcję stosujemy dla najbardziej lewego nieterminala.

Bezkontekstową gramatykę 0 nazywamy gramatyką klasy LL( 1) [22], [23], jeśli spełnione są dwa następujące warunki:

1)    gramatyka nie zawiera produkcji o postaci A —* Af, A G Ejv<,

7€S*.

2)    jeśli istnieją dwa wyprowadzenia:

S -j-71^72 -^71 <^72 -77*71 f)i.

5 -77*71 ^72 -j* 7i r72 -77* 7i <?2 oraz zachodzi first(r)i) = first(r)?), to a = r.


Wyszukiwarka

Podobne podstrony:
img196 196 D3. Podstawowe pojęcia teorii języków formalnych i automatów Zapis 6(q> 7) = (g ,*?) o
img192 192 D3. Podstawowe pojęcia teorii języków formalnych i automatów Zakładamy przy tym, że £ = £
img194 194 D3. Podstawowe pojęcia teorii języków formalnych i automatów Innymi słowy, z każdego niet
img195 195 D3. Podstawowe pojęcia teorii języków formalnych i automatów ciąg numerów produkcji grama
img191 Dodatek 3Podstawowe pojęcia teorii języków formalnych i automatów Podstawowe pojęcia teorii j
img191 Dodatek 3Podstawowe pojęcia teorii języków formalnych i automatów Podstawowe pojęcia teorii j
img199 D4. Wybrane pojęcia teorii języków drzewowych i grafowych    199 Automatem %DF
img197 Dodatek 4Wybrane pojęcia teorii języków drzewowych i grafowych W dodatku znajdują się definic
img197 Dodatek 4Wybrane pojęcia teorii języków drzewowych i grafowych W dodatku znajdują się definic
img198 198 D4. Wybrane pojęcia teorii języków drzewowych i grafowych gdzie j4,i4i,j42ł...,j4r(a) € E

więcej podobnych podstron