^(2-x3)4
(18) f(z)
(19) /(*)
(20) f(x)
(21) f{x)
(23) f(x)
(24) f(x)
(26) }{x)
(27) f(x) = ^siax + y/x + 2y/x
(28) f(x) = arcsin 3x
(29) f(x) = arctg( 1 — x2)
(30) f(x) = arcctgi
(31) /(ar)
(32) /(ar)
(33) f(x)
-3x+2
g(x)h(x)k{x)t gdzie g,h,k są funkcjami rzeczywistymi a sin bx 2x + sin 2x sin2 3rr
1
COS4 X sin g+coscc
2 sin 2x
3tgx + 4 ctg2x
3cos2x
arc.t.g 2x arcctg2x
5x + e
= e
10*
= ln
pQ,T2 — J )e3 arcsin*2
log5(a;2) + ln4x ln(ar + y/x2 + 1)
i+x_\
1—sinx
logx a, wskazówka: iogx a = {gf ln(ln(lnar)) + log 4(log4(x)) logx ln wskazówka: logx ln x =
cx
ec
~lnx
( (43) /(ar) = ar*
\ (44) /(ar) = x*
(45) f(x) = (sinx)COSI
(46) f(x) = (arctgx)x v (47) /(ar) = (tgx)^
; (48) /(a:) = (1 + ±)* i (49) /(ar) = 5ln2x ; (50) /(x) = X*1
'(Si)'m = fi
2