00073 Ì669057b99e1a32461d685010d9b1f0

00073 Ì669057b99e1a32461d685010d9b1f0



72


Hembree & Zimmer

FigurÄ™ 11. Adaptiye Filter Weights (true gain = 0.7).


Notation for Sensitiyity Analysis

Given the form of the adaptive Kalman filter, as presented in the last section, we would now like to examine its sensitivities. In particular, we examine the implications of discretizing across the unknown parameters. How many discrete values are needed? What is the impact of assigning prior probabilities? How does it compare to the Kalman filter constructed from complete knowledge?

In order to explore these issues, we need to modify our notation as follows. We have a state-space model of the process that actually generates the measured data, or the truth model, given by

=<Drxr.i+wr

yf = Hrxf +vf

where wf ~ N(o,Qf), vf ~N(o,Rf), and xj


Wyszukiwarka

Podobne podstrony:
00072 2fec4dc735aa7ef2bbca83c0f0b663a Adaptive Hierarchical Bayesian Kalman Filtering 71 FigurÄ™ 9.
f2 11 FIGURĘ 2.11 D w doping software using the Java API.
fig11 FigurÄ™ 11 Gold Hnafatafl piece from Tuse in Denmark
00046 ?c2509350e21c3447d8db6068221f3a 45 A Rule-Based Approach to Multiple Statistical Test Analysi
00060
00066 ?5300ad93108670be74940904f43893 65 Adaptive Hierarchical Bayesian Kalman Filtering can then b
00077 2cfd36974620f52a97732003b013ed 76 Hembree & Zimmer i(x) FigurÄ™ 12. Plot of Approsimate Sc
00079 ?4addfcc1ad8f7adb124bf9726a6931 78 Hembree & Zimmer FigurÄ™ 13. Weighting Function. model
00081 /16b9e2d8f8d2efe7b66f1d797df498 80 Hembree & Zimmer FigurÄ™ 14. Covariance Comparisons (ac
00381 ?c79f45a4235fae8108ab837f609112 385 Regret Indices and Capability Quantification FigurÄ™ 11. C
45 fractions obtenues (PRHex 1 a PRHex 7) sont presentees a la figurę 11. Les resultats de tests d’a

więcej podobnych podstron