00372 12f0c0c25f1b8f6248453094a035de

00372 12f0c0c25f1b8f6248453094a035de



376


Obenchain

Table 1. Fiłl Yolume Summary Statistics

Variable

Observed

Mean

Standard

Deviation

Min

Max

fili volume

73.32

8.58

51

98

ąuadratic regret

74.06

142.82

0

576.00

inverted normal

0.15

0.23

0

0.83

absolute value

5.87

6.40

0

24.00

Iogistic regret

0.23

0.18

0

0.62

Inverted normal regret is extremely sensitive to choice of the H half-width parameter. Inverted normal can be "flat-tailed" like Iogistic when H is smali (ER is larger than, say, 0.3.) But inverted normal can also behave very much like quadratic (as in the fill-volume example) when H is relatively large (ER is smali).

Another major distinction exists between the unbounded choices (ąuadratic and absolute value) and the bounded choices (goal-posts, inverted normal and Iogistic). We have already observed that regrets which remain bounded as the deviation of X from T increases tend to be sensitive to one's choice of H scaling along the X characteristic axis (as well as to one's choice of target, T). But the unbounded choices tend to result in a long, relatively heavy, right-hand taił of extremely large regret values. Bounded regrets cannot lead to heavy right-hand tails because no index value greater than the maximum regret divided by ER can result. On the other hand, regrets bounded at 1 with ER > 0.5 might tend to luli their users into a State of complacency. After all, really "bad news” about ąuality will never be signaled by an index that cannot be morę than twice standard, I < 2.

Data Cleaning and Current Yersus Ultimate Canability Our data analysis tactics can and should depend on our finał objective. When the data at hand comprise essentially "all" recent production results from routine process operations, we can attempt to characterize the fuli rangę of satisfaction currently being experienced by our customers/regulators, which represents our current capability. But, when our data come from special studies, designed experiments, or relatively "well behaved" subsets of total production, our objective would then usually be to ąuantify any implied improvement over and above current capability. When we have only un-planned, historical data and yet our aim is to characterize the potential "ultimate" capability of our process, then conventional wisdom suggests we should at least reject outliers (if not also


Wyszukiwarka

Podobne podstrony:
00394 ?4bf53b90d85a9db56d6772e2aee78a 398 Obenchain Table 4. Yields for Processes with Mean on Targ
DSCN5297 (3) Table II: Platform Summary. 32/64b x86 ISA ARMv7
00378 65ab0b7d9e95f446f0a726dda2f032 382 Obenchain Figurę 8. CC Curves for Four Fill-Volume Regret
MySQL Cluster Data Node Configuration Parameters The summary table in this section provides informat
69184 shoes&pattens2 132Shoes and Pałtens Table 21. Summary of the main groups of footwear from exc
Rock laboratory testing results 8 Table 3: Summary of Brazilian disc test
Table 0.1: Summary evaluation of levy-based and ETS-based MBMs. Criterion/
8. L’Afriąue depuis la guerre d’Ethiopie(1935-1975) : table des matieres du yolume Directeur du volu
PROCESS SUMMARY TABLE OPTIONA ONE FAMILY TERRACED HOUSING OPCION B LOW DENSITY MULTI FAMILY
Przewozy morskie Ćwiczenie 1, Tanker 8 I• TABLE ASTM 6 a .CRUDE OIL    ■ *.YOLUM
Przewozy morskie Ćwiczenie 1, Tanker 9 TABLE ASTM 54 a .CRUDE OEL YOLUME CORRECnON FACTORTO DENS
8. L’Afriąue depuis la guerre d’Ethiopie(1935-1975) : table des matieres du yolume Directeur du volu
skanuj0009 (376) Neuroanatomy 9. Spinał Cord.13 Spinał Cord, Topography A Spinał cord and spinał ner
Etap 1 6 Microsoft Access - [Samochody : Table] File Edit View Insert Jools Window Help Type a gue

więcej podobnych podstron