Paradiddle Power6

Paradiddle Power6



-


HH

SD


11


1S?


X X


X X


X


X


XX


12


_x


o o


as


xxxx


X_LX


IICa a    ___

DD 1_#    7^T

RLRLRLRRLRLRLRLL


r Er r E

RLRLRLRRLRLRLRLL


13


BE


O O >    0 0


o o

14

x_


r * 7

RLRLRLRRLRLRLRLL


t- 7 d r /7 d


RLRLRLRRLRLRLRLL


15



r pcj^r-p-

RLRLRLRRLRLRLRLL


* LJ W


RLRLRLRRLRLRLRLL


17


1LC


o o

7 Lr?    P=

RLRLRLRRLRLRLRLL


1



RLRLRLRRLRLRLRLL


« J

3Ł

X X X

.E

X

_i


o o

20

II p_# _ł

r 1

11 f l»FJ——F?

L # J

RLRLRLRRLRLRLRLL


RLRLRLRRLRLRLRLL



Wyszukiwarka

Podobne podstrony:
Paradiddle Power5 o o HH sd : BD TEA- « J J X 1 L r- 1 RLRRLRLLRLRRLRLL 22 o ox_x_ XXXITR r~
52283 Paradiddle Power7 o o > HH 11 . j.,j j j T ■jra LiL- SD=łF C- ■ J t-1ai ■i-a n ijj •
IMG!13 11 3) V przemianie izochoryczncj 3-1: 12 3) ^ Przemianie zochorycznej 3-1, Ao-i - 7-»Z 35 I
Paradiddle Power6 11 12 ST SD MT- LT I $m ś.m. śrz a m. a a * RLRRLRLLRLRL RLRRLRLLRLRL 13 14 * M.
Paradiddle Power8 3 3 3 11“Si=E=st 3 3 12 r i ■ i -łi-CT s m d._ l
Paradiddle Power6 11 st : SD . LTmmm
81238 Paradiddle Power3 I I 1 I I I IIn exercises 12 through 1 7, the left hand crosses over the ri
Y Xx x2 30 4 io 20 3 8 36 6 11 24 4 9 40 8 12 Oszacowanie modelel: Y =
.1.Lhl .L .L ■) ,1.1 liii ,1.1.1.1.1 .LI .Ll.lll ,1.1 .lilii lii ll 01 02 03 0- OS OS 02 03 09 10 11
15749 Paradiddle Power6 12 = = = a — a — —r JĘTY*
16278 Paradiddle Power1 The fills in patterns 11 through 15 below utilize single paradiddles and cr

więcej podobnych podstron