BEP =
Ks
c - kjz Ks
BEP’ =-* c = BEP * c
c - kjz
BEP
BEP" =- * 100 %
Pmax
WACC = J_ki*Wi Kd = rd(l-T)
Pmax - BEP
Wb =----
Pmax
We+Wd = 1 Dt
Po = X"------ Po = Dl / re
(l+re)'
ra= ke = D/Po
model Gordona Dt = Do (l+g}‘
Po=Dl/(re-g) Po = Do(l+g) / (re-g)
Ks
cmln — Kjz H--------
Pmax
c - cmln
Mbc = ----------* lOO %
c
Ks
Kjzmax = c - -
Pmax
kjzmax- kjz
Mbkjz =-* 100 %
Kjz
Oz = N/CF
CFt Nt
NPV = l--J--
(l+r>‘ (l+r}‘
PV(r2-rl}
IRR = rl +-
PV + |NV|
/ ICIF^l+r)"
MIRR = iW--------------1
X COFt/ (1+r)'
ke= re= Dl/Po +g = Do(l+g)/Po +g .
ke = Do(l+g)/Po(l-f> +g
kp = D/(Po - f) .
kz = ke
CAMP-
ke = rRF + pe(rM -iRF)
(rM-rFM)
Opr pr
O = Ko * r * t Kn= Ko (1+ n*r)
Reg ulame wpłaty:
O = K * r/m * n(n+l)/2
Kn = K*n +0 = Kjn + r/m * n(n+l)/2 ]
Opr skł
Kn = Ko(l + r)n
Osk = Kn - Ko = Ko(l+r)n - Ko
On = Ko(l+r)"-ł * r
Km„ = Ko (1+ r/m) m’n
IC,= Ko(l+rl)(l+r2)...(l+m)
Km„ = Ko (1+ rl/m) ™ Ko (1+ r2/m) m Ko (1+ m/m) ">
Kap ci
Kmn = Ko * e -H Km„ = Ko * e
XCIFl / (1+r) - r„, = (l+r/m)m -1
Pl =-------------
XCOFJ/(l+r)' _ _
r= 'W n(l+ij) — 1 1=1
NPVR = PI -1
r,™ = "V (1+r) -1