��SPb. Math. Society Preprint 2001-06 19 Sep 2001
2000. inductiv p y [FFZ Lie class
This dynamical
PCand n v
27, i GRADED
of
gebraically
with
1.1. the
the cycle
algebra
algebra
The
1 a Kac{Mo
[SV1 eliev-V
algebras
of
In
classical
Sa
graded
co
considered
of
to
artially tank w
new
St.
It
W
the
C-algebra d
dynamical
F
t
on Borel
(
pap examples LIE
s ] e
is et algebras
he and Cartan
XTAsso
P
consider
l
is
etersburg
old
) ast
Lie
er the
additiv systems
supp
of
con ershik a
of
o
and (Gel'fand) y
a
a,
con St. Ceasure robabilit l tin
ciativ
con Lie
as
and so
m paragraph
this s
p
tains
as
algebras algebra
orted P
e
ositiv of
s
1.
tains algebras.
econd o
imit e and
e
ystems
w Lie roup escription
D ( is
{
]
called with
Z e uous
g nite-dimensional
etersburg, p i
[SV1, o
ell-knoZht had s with w SV2,
b ivision,
the simple
an ne ALGEBRAS
the gran
y )
algebra
suc
of
d
w algebra
p
asso wn
reserving en A.
in nite i
ith measure g arian
sub t
Kac{Mo symmetric
based
functions transformation
with
generated homeomorphism y
f
Steklo A n
ine-algebras
e
ject
ciativ algebras whic
n nite-dimen
yp In b
RFBR v
t
presen
191011,
as
he construction
con
ro e a
e
on
of tin
a discrete
nd
V]
v ots
the
action
(
Intr
ea y o t
o
M X
m
99-01-00098. algebras Remark
is
enera sso
d whic
the
uum
then
athematical TWs (
in
y T the
l studied
Russia. ted later L
l b n M.
ast
g the a
whic extended e
t y( h VERSHIK
e a algebras
oduction
t this
alk
) t
b
he
AND
ne pp ctrum. w
.
of third
p m
r
1 X s
sp
ro
a Let group.
a aragraph
p sional
i
o
s easures.
Z group
e
n case system T
eci cation
A of h ot iativ
c
a
i
hw D
the p b construction
on
(
eared
X generalization
Institute, of a
X
a
ositiv and
X T),Zis o as ie
Conference onsequen this sp
s
YNAMICAL
see
-algebra non
a
) p n
c
)Zf i
disco
of
and hic a
from
w
the in
ell
algebras
utomorphism . algebra
p ross
w of ith
b The
[
here
e GKL]
this pro
e
for
of
Cartan
X
RAS, (v duct
f
group from
c or yp
s
v
t
h . the
W spirit
arithmetics:
ered
example
separable e o constructions
K
rst of
a
pap construction
i
in ac{Mo
an for
re
s eyl
e ably
s whic
trivial
onAgroup subalgebra
Tw
y
emidirect adding
t
e
of o
w
p 1
opr indep example the the
en
n
Neumann)
p w f o
h SYSTEMS
-adic
e p the scalar
te n
tly compactum of
[
i
oin nden
D,
de nition
dy
a s
e
in set in
lso
a
of sso
algebra
o
ecial ers
pap
t
ZM].
algebras. f f
Decem ( duct s
n
pro tly case
this
uggest
CAi tegers. s o of
f
ciated
whic
of
s
v suc
X in h
t
and h
X w
t iew
the
Al-
Lie
be
he
o o o-
).
i
r
of
will -algebra )n op (
a algebras otation t measure
ned tly is
presen
of
atically
system
dynamical
torus
den cycle.
resp
imp We
brCcalledWcorresp co extensions Z corresp Completion In ( monomials is where
similar
which
calmThere If'linear
( mans
As
2
s as.
v
with
In a
It
Lie
p dynamical generated
olution
-algebra
systems" )i
is
oratan are erator
e oning alues of
describ i ssible
w
cial as
whole
so ted in o
Some
w r Haar
eUClinear
represen
algerbas of B
is v p
want on
i
onding de ned s
onding
with SV1 rotation
n use
t
called our algebras is
whic
o
case (
asso
X
[
t
to he to andCtoCA X
n t
[V]. w
considered)
systems there
(see
e a is
generated
s
generalit ha
non A
r measure
in ole classic
pace
e hw arian include
ciate
systems
xplicitly aded Z A
v in
\ tation m
]
to
trivial
p o [ZM TU( a this
g Z It
(
and lassical's
series
Z
i oint ,Ua
enerated he Lie btain
e
-graded a ( )( pace
n (
c -algebra. t
this
n
d
-gr w
is (
X
will
t
X
t y he ith y t i
in al Vfh
[FFZ o
)=(
o T) b T c
(in ) yf
)
out
m v
b
cen
of
t algebras extension
n
a teresting algebras e
state'o )=
discuss
b
Shxs
ea w
t he
s whole butfA.
( as
Cartan
easure This
are o
y
ndLrepresen triple
also
direct
pap ( t X
irrational
tral
i d ]),
]
t
n Lie called wTxall )= M.
).
b Lie t then )n n
(
a he m
ith
ynamic
hat called
discr
r
mo algebras yp v toftin
y
man ))
see t Tsum
(2 s o
ers r
tate
XUfolloUula of
he
a
algebras de nition ere
theory ct
here ith brie y enerated
dern on
n w
t his
w esp
ete another
L her and VERSHIK
w that rotation
a
y (
as
rst ap
a
lso area
ere We construction e =(
X ) (
ie al
wing:
rbitrary nother
p
e tations n
w s b
as A
c
and "quan n
M
algebr TCthe'+C
restrict
p
. systems|some
[GKL]
ere e Upto o X
c T-closure UU), on n
i
M. g
w 2
s
w onsidered
ers on
Z
ctrum
(
with
X n
;
ith
a called ) C
included
h
d Sa tarted
).
one
s 2
ysisits nd
etailed
(
o m uous
as
de ned
v
discrete b t
c
Neumann
f )
eliev functions
w
on t
ourselfn The n
, tum \algebraic
general t unit one
of a
o no his.
-algebra
( )
and fU).U
t
X
f
o appropriate
he
tin
t w the algebra
b
he uous Lie m
a
r
not
"sine o:
torus") he
v [SV1, n
image
it only
in
;
e the w tm
emarkable
i construct case f
ersion algebras"L T Tof ,
lo y E
o 2-co
n n
dynamical h
the
yp
w
r [SV2] a
a xtremally
form
a
o as t cycle
shift e nition
ne o
whic
2
o e
ro
but rbitrary s
the ultiplication
SV2
t d
of
a circle.
o disco
Z
ot
whic X are'
of ystems. of )gC
s f
A
theory
h
the (
lgebr
and -represen
the ac-Mo m
o inC n
A
from
K
Lie
] (
systems". s ll ys ( o
the -norm
n
o X
w algebr
v
X
ere unsplittable a
d
ered
generaltheory
examples those
m
systems
p
algebras obje
as opular K v
i t
-dimensional
2
c and
he
onstruction
the
ore
)|
- asso
w
d
pla dynami- ) -
theU
2
which =
aic
B
ynamical
o
e a actionU
indep i o
(
dy i
elo T tation
X
had X
notions
giv
ystem-
ciativ us:
trivial
es es
ww
alge- e e
f
with T
hose
v
c s
and
en-
ery
a o t
de-
)
or-
Z
he
r s p
of
ct
e o
kPr emark.
so w
Lemma A denoted
dimensional (=
of
no
R isomorphic measure
wher
subsp
zer
Lemma
This of
ets v
will arian
t (=eac Lie
W measure
minimal
1.2.
in
of
One
in
+ tegrable
e
o No b
o-sided (=
A the
oc algebra
\asso
;
assume
(
[lof. e
can
'+ ww
X ac
e
h
omp
monomials
W T0CeTdynamical
Un t
c
0
e 2 ( 1 hop
= e The o
-orbit
algebras
iativ e
=( 0 ( [
). X
X (
onent that
ideals),
k
. . s
need uotient'eac
d
ystems.
t
this there
)=
cen as as
e ne is
.
k 'The TThe h
GRADED
e"
cen h
q
Then
+Uto
)=
tral
in
analogue
llU( ter cen
c a systems
ubsp
)'fol'sUare s
a
] enter
Lie e
dense X
o
and
c ee t
n further
M
n<�
rbit
lowing
hecU-coC0
2 A
expansion T): )
X n
2
his
is [ZM are (
A
;Z
U not X
'kt c ( (
n ACac ter. Tas t t LIE
(
e: yp
of
X no
of
hen
n ( i
ALGEBRAS
h X X
U+Uformula ycle oU T]. n
c
ideal
Lie ]=(
a XT)
Z m nonconstan
m f onsiderations.
e
k Algebra
.
t
w
will
) it [ ) Most
U= ([UoU=
t
)= Ra then dense
o
on
is
his
ell
) A
f
m
f X
( algebras
; of
Z
x y0n)=' cX'isbas giv
( it.
A
n
l
n
]=
emmad ( n in
over the
0 assoUteresting
de nes and ) v )
( T still A
;
]
U' zXn(xCU)abCin new e AND
( R X
)
; (
t
Z 0
0 X -algebra
Z
is
n'X Tciativ enter
U)+ c
, ;
X
D
-graded case
c
)ctheba TItTe
xamples
k =0
;
-in
X link
an
YNAMICAL
)
;'2-c
U
([
;Uwith 2
e
n
is
w arian
A giv
y doUsetUith is kno a b
a
cycle t
Z
n C
nd ean
0
U Uz 0 lgebra . , e
.
] dthe ( i m Lie wn
X t
o
w
simple
o
'l'l x Ts'b
f ergo
The
f
Lie onstants has
een
M rac
n> s S
) )+ o scalar ) consequen:ndTo YSTEMS
) measurable
i
c algebra
calssical
e
U Uif if n
0
w
that
mmn A k
; i sub
v
ets
+ sCUd the
c ic arious
k
n ([
t
(=
0 omplement
6
+ = = ( n
m
n yp
X
z ; ( v ot if
+
algebr
l
with
X case
; m
alues subalgebra n
) e
d xn:a
a
and de nitions.
]n T
+ y)Ufunctions f
U)
tly
functions).
is
when
a r
: the
no
i
; esp
n
n quan
and here
=
which
minimal
k v
t brac
; arian
propTtum
0.
e
=0 Let
l line
ct
one-
+
:::
ar
to
i k-
er
ts 3
i is
is s
(3) [
CuncounU
of
will'[ [ g
1.3. one
Cartan
The
(2)
brac
Ucall X
of
tral
Lie
Itcfthat R measure (Dots 4
(1)
A same
new
as
[
.o
emark.
( 2
This
Lie
means
it
X''0'(
all b k theU):C
ACLet f
extension
). e (
Liex
Lie dimensional
middle
1 in Tas (
(
ets (
w
algebra cycle
X
X mean
us
tably 0 ) under
The iden c
giv
follo '0
eU USpan T n
a
subalgebra.Uof scalars
subspace A
X
algebra
)
+1
for ),
AyCo
d algebras y
framewU0
that
).
es
e ne cal )
(
w X
list 2 A tify
f
lo
t but TUc
the s
m
ed e
erm
an
yclic
i
t
an a
oUU ork ( he not
m
to
rst|\dynamical"|description
X
f n bT
no
y
; but e
relations
loUp Tot w ]= is .) p
o
cen
art X
Kac{Mo ro
[ g
f 1 1 0
c A non
e
X[ with
(
g1 A
e
]=' X'the Tb
]= s
]=
trivial. f
o
l )i
X[ enerators: al , ( (
rm
o ( f ter
+1 0 trivial
X e not
Xalgebr o ubspace So,
c s
Lie
f
al -gra T).
( ( 0 represen
utation
'( A
'0
e o
(' ( TZUbracccohomologous
;
) ) 'is o algebras
algebra 0 e
). whic
( n
X X)U 'X )
A So
e
Xas a d ot T2 whic extension
; (
y
; A.
X
k
A
X.LU')aCded T; w
1 1 0 p ; ets
system
h ted
follo consists
of
( ( (
M.
L
; attern'U'), ith'(f
h
e
(
( L
1 t
X
rUi ie c a indices,
)]''( e T) VERSHIK
)] f
)] w
X
)
( ie
re
an
n a
ws: a
i algebra
= = =
s m s
algebra. A
), e consider
extensions
A
again
)
X X2
0
of
([
) )
i
Cbut Xx t
(
0
o
on TLie
(X0U U\lo c s
( not ]), used
'1'( X 0 w
z
X T U ofU)yero e
with uous s
cal
tin n
e
scalars
( ),'0 Span
) W (
1
algebra h
K'+1Xw imp . of ecause
)
+
Lie
X
+ di er
again
) 2 =
subalgebra".Uthe Tspace ) inear is
b
m with
De nition'; systems. a
eCe
Z
; w Tof
+
the
X
( f
c
( )
( A
(
C
'onsider'I ro ill ubalgebraCn Z
) ortanU UUe'l 0(
X
from
ere
a an
; linear Tl
0
X
giv X y
A
) Lie
ot
s
) (
g 1
whered Here
it
inear
)i
the
)
a X
tc o
lgebra
s 1
)
t g with
new
hanges. scalars
f easy
hreec: Span
b in
(
'Lie and dbrac s ).
y
X
v
pace
f ariance
d de nition n
runs
) A unctional
Denote
A
e
t
e nition
t the
W
algebra a k
o
ypUareUn
(
k
(
X
e c
f ets is X
First
es
hec
o T1'w cen- 0 To
+
t the
v he ill
m
i
er )
of f
).
enough
Pr
twe
Theorem
and W W
graded
the
resulting
factorize
subalgebra.)
where
algebra
It
(4)
linear
where
=
So
is
XU;X ( o
en
of. eviden
same
eac de ne
e e
+1 op
0
; ('A w
e o
A
p
1
('to The e
h structure in
mit
=( X( X=Utest T1 c A duct
(
ro
) i
X erator
it =
L
as ie o
)
an
'0 (
t t
(
; )
; k'denote n Span
. A v
e
he
1 '
ernelUX TtheX(C
algebra
GRADED
; )
that
The f )
;U1( ( monomials Cv ( er free The
1 X
; and
(
;
U(' U( eri cationxALGEBRAS
(
Lie
further
)'1 ) ;
as
;
Jacobi
fol a
s
;Uo 0 n d )K'( i
1 maximal
) i
=U=Uf )= )= the't LIE
ense
( X
o i
s
a
owing
; ) f he
( Xl (see linear that
)w
)(
lgebra
)
denoted
:> <�> 8
U ;''1 s
is ubsection
=XXXp e 'pro
lemen pace) )
; '1 ; 0 s
)= i
h
[V den
teps
i
1 +U;'only 0 ( art s ideal
1 2
n 0 ;
c
.
U U=U;'(
]).C;'hi duct
formulas A AND
)
A
)U;:( n 2
whic
. Let y
tit
;
('(
1 Uo ts 1
) are
(
f
2 b
Axsc
X (
;';
y
U;''UU; A
) ;
1 (
M
; a i
U) whic
='n ( of n h )
u X 2
A t
0 n
2 i
g l
;
A s
X . he
; a ; l
Z ,
=UXU'1 s ( e
i
s
1 s
; t
A
ni0
c Tg TX'dC asso
)'1 )
rue
f h
same (
;U(U0 +1
1 hec
ive
) )
n Th g =
ollo
(
; U(' ) as iTxa ciativ D
enerated
;
1 A
:
)Ut s
;
1 as
r YNAMICAL
; +1 a
( the
t
;K'=K' kXw ). 1 )
he n a
0
if
1n>=0
n>c (
tn(
zero +1.'o e
;
U)U Uhat'The 0 it ; n
s
gradedx1
i
anonic S
;
n
; ),
0)
0)
p
=( y
mak a
(
1
1 in K
(U(U)=U ([ 'fTr algebra
b e
act
; tersectionC(
;
; ac{Mo
R
1 (
t
1 ( a 2 es
t
A
) bX i o
YSTEMS
; he
s
=U'[K'])'dalCLie::
) r
0
'
t sense)
(
isomorphism
'
hat
X loC
=
U; ; o
algebra n
)
X ).
2
cal
d X
0'U =0
; y
this
(
with
+ a in
)a
= U[
0 X
1
t
K'; s
X(U algebra algebra heory )
i
d
0 the
A
('1b with 0
C
U].
)) .K
artan
] [
lo
It
K].
) the
The
)
and
is
b cal
e- 5
is
Uis a
;
1
(0,+)
( (+, The
(+,+)
part).
forU emark.
( If
Pr
de nition
kind
the
example,
2.
but
R 6
;
,
;XNon<�o Lie
;
nThis is this
of.
extension
) ) of
ww
=
an
algebra
n
Assume 0
If
0t the
(
X consists (Xo o s
'en>completion -image
is
unitary cycle
1.
0 1. enough
) o
h
(
'X Xc e
Xan f
c W
)
;
n
;
A et
(
f e
then
= Xn'mn mrewriteX(
of
( with T(
n the A
X of
op
n c
)
;' X(
(
; alculated
)
)
e
= b
n
functions
= = =(
( e
) X=>+1Xerator).''of image
(
) of A
:>= <�> 8 ; X cause
theXde ned T
)
(X;'; e
= 0.
';UmXXXm'the X( XAX
)
; (
+1
n X
m
;X; nU 'initial
(
0 n
;
(
)
; (
; n
'; n n ; (1 ; n =
U( '( X T1
n m m
s
)
m ;
;
; ;'=Ubrac Xa'not XA.
).
; ; X( ) Tof i it the )
A
; m e generates
( n ;
))
)(
(
Um = ;
'1 UUU' '1
(U k 3.
; X
form
; b
; =U'all
n
+' U; ; ; ( ( Tbrac ; M.
nU; 1
o (
; ets )) 'k (
n
Using
;
n
' Um'nU U'( 1
U1'mU v
; e
)n0
; VERSHIK
) A )
n ; ula
)'m ( )(1 Umni
R
is
n for R=
n ; et
m
1 and
s X (
;
m
all
oUisomorphisms dense X only =
; X' ;cX
U;U ; (
;
'1U;' ;
all
=
m
n w
; 0'U;UU m =Unur Talgebra.
R
n'; ) d )= e )
0
Um U; 1 ; n 0
U U;XmX;X main
(
n but
for )=
n 1
onomialsm+:
n an
(''Xc i
;
1
mU) m UobCdense
'n ;U+
m
(
)=
e
' n (
)Um' 1U; (Unnif ;
') ';nn
; consider
0
n lemen
)U n +c
m
(
; (
; Uject. 1
)
1UX
n
)
Un mU d nmw o ts
; ;
U) nc; p
=0
n m (notd ),
n
nly
='; ; )'e A art of
6
=0n>can X , o
m
0nn>m>m for' X )
=
X) (
<�n
= only:but
, f lo
n
=
(U U; TA cal
K;<�mm nnrewrite T),
(
A
0)
X
R
n
R (
;
'n a X
'X Ta
0 so
lgebra,
m s
) ' some
l
o
) )i
cd d the for
al
s
.
algebra de ned
subalgebra)
Lie
2.1. General
2.
(see
the
to W where
(3).
role
4)
3)
2)
wher Tas e
1)
A Theorem
w (0,
( ell
has can
Supp
W Lie 0
classical tral
XXXeXXX;
algebras 2
form nothing
of 0 n 0 n (
)
This
subsection f and
e
General m m
algebra . ;
(
(
cen ) ) no
'(') (0,+)X;
[ )
Kose '('the'K
ulas
arX=
) ) n
manner
X X Xsign Xw = =
] e
H
ones ;
i
and de nition.
s, Lie
with n
t n
0
Lie
( o
is extension
or to (
n The
;
A ( heU IGRADED
( (
is
as
bserv
;
1
HKa )
fol
.1) lgebra d
((
X ) nU
general
(Cartan
) ) =
a \
a c giv
con description. UUUn'the'n';
(0,
; algebras ; ;
do
+
omm )
=0
formulas
T=
lowing:
1 :
linear
= e
; 1
H es with )
H ;
tin
n
:>>>>>>>>X;''+ LIE
<�>>>>>>>> ( (
8 "i =U;
t
. ).
f hat
us
utativ m 1 m
;
i o
AXXXXn nUUUALGEBRAS
0-uous monomials ( andUU
s
e n 0 n
the m ;
simple ciated
space, ot ;
n
n
is asso ;K>fU
H ;
( s ; +
v +m+
the
(
W
examples ontinuous
X (
1 1
a
or
ro
w Tery n
e e ; 1
f ot
('1
;
orm
U
linear ciativ XU\'
+1 )(
asso system. Un'; ;
form
r ith algebras (+,+)
)
'0
;
imp
ecall ortan
;
a asso b ulas UI
; m
m ;U
1
ulas
''n UUn
direct erator V2, omplicated
c
=(
AND
;
are )
r 0
c (
A ' (
op n ackets ;
e') n
[SV1, n
.
iate
n
crosspro R
(
H of ;
for
; 1
i e m
t.
sum S
+ + D
"i
'H
Lie
a l
A Twithn m mU)(1
ore
;
o ;
n f UoU UYNAMICAL
nd
( c )) ;
m
X
f
'X ;';
( C Tc Kac{Mo al in duct
n
Cartan he
- part
asso<�,'n
;' U'm a + ;
algebra .'US
nd
a onomialsU)
;
)
iV r U'mU1I
new ;
] oot
)
; ;
=0
)
t od ) 0
(
ciativ )
;
( 1
f
1{2)
YSTEMS
s n ,
op
)=
terms, Xn
; n
o ubsection 6 + + (
de nition + =0 m m> s n
systems
with
d
)
erator).
e
1
y
;
whic compare
in
a
;
a
t
re
algebras). o
han h n m<�
lgebra
: <� 8 : <� 8 : <� 8
the
unit
n
the
n n n m<�
a K
d
m<�
sub'
y and similar 7
0 0
T o re =0 0
1.1.
ynamical
f
(Cartan
he
ame, )
c 0
algebr as
g
raded
cycle
lo The a
n
with
B
ew
cal
ut
Haar consider
of
where New ondition
Xmcan onding )b
rational w ubalgebra
Sine-algebra
of
sp
sum
op
giv (
[SV2
not Lie
example c
2.2.
a is
R appropriate
w But
A Then same
the
The
with
8
emark.
eh
sequence Let d
erator F e
The
The
H The
=G= Let
unit v
en ,F s
Kw l
a it
T b is
( o brac
(additiv additiv ( in
o
cal
yZc and e (
d
e
could
o X s
,i Z
realized .I b H
p ase
3 p
n v L
2Ug of y
o
T,
spirit
k
ectrum
smG eigen eneral G algebras examples of algebras
er
to ets:
algebra
um
is btain
ie
.
T=
sense)
be orresp X
it
o c ^
e) r )
KL
Ke
is
U)Eb e nition as
e r b
T
-in
measure
A
, e no
i and translation on t e of
example t
v o ofX
cause (see
H
n has n constan [V]),
i
alues o HXX'
v f
teresting o utativ
s
e 2Ufa V]). puts
the
arian
sp
A TSubsection ;
comm
i
w is without'i
g 1
(
of
Sonds
s (
e ectra
roup
HX)
ell-kno
=
p It )
an
rgo w from
1
c +1 0 2H
i
f
e t essen
of
ompact
X t Kin
yp
X = ctral
on dic
a (
to '0
w 0
s
H X X) A.
(
= R fs as '(
Zof onUf as e lgebras ubalgebras ). v t (sa
from -adic
) )
arian
wn In
tial , 1.2
o
p system
( simple
pZ=Bthe decomp imilar de ned done A X
r
Section
. y
some
= +1
p more ( =0 VERSHIK
X p e ;
Zc a (
(v olynomial
2 particular,
i
restriction
H M.
t 1 1 0
our I ( is
b Tunder
algebra
. ase t o
generates
( (
on
elian o 1.
T where (and
b
)w the
i n gelemen Neumann ), indepKHX 1
ro
exactly
) ) )
1 yp
efore
n with yp
f
p
osition
0
Tx[GKL] ) e. as
X
tegers, i
ots
oin group n
t = = =0
f
as H
2 and
=
=
t
discrete
e algebra (
T but
t in
rom '1'
X
0
o subalgebra rational
gro the
xT:1g fnden f so e then
o graded
the
(
f = f (if
1 A
p+1 tly theory
w 0 called of
v
with
wth
XEthe
(
iew. considered
andG=fs TA
2Gtheorem) is
is set )
as
di eren
X 1 itK'
a
exists)
2H
(
the
op
o Lie
in
H o
prime,
Cartan i
T,
The tp
f
X pEerator
e ) f
t sine-algebra.
K2
.
ctrum.
hen f lgebra
t s
[SV2]
is The s
imple
o he
eigenfunction
a
)
with hat o
)=
of
m H
translation
t :::.
dimension
o
and i It i 1 erator.
easure f
LKM-algebras).
i
and hen
n
[Kop p r
, T
Haar AEs (
t
rst
functions)
also
sac view
ositiv
[ . o
=1
A
o
Ts t
uc
meansE Ko
i
[FFZ (
n
H
is onE= e
h
i ystem
A K
haracter
measure
(
the trivial
W
system ill
= adding n
(in
corre-
on
r
e i
].
mc KH ).
that
(
w o
W
ase o
,i
see
a ts.
ir-
s in
of
). )
is e s
Ldep the
space
x2.3. Go A n^
algebras
is
description of
direct
form
of alues
Pr
Cartan
wher
(5)
GTheorem
eigenfunction
Uwith
group
existence
discrete giv
v the
n + T
is
The
This
Supp
W The
is lgebr
1 of.
ending A a
= degree
e
ula
a e
U. The as Assume
CI
set
s Y2Udense ose
s of
in g
n g
T ummand,T1 nUgon
n
ubalgebra )h )
( is Z
sub
roup (UfGthep
sp
n
,(
Zthis (1) ectrum.
roup
-in p case 0 1 ( , GRADED
a
=
the
e T
of A Yg
the unction
(
on arro alid )= N
algebr
). )1
f 3
v the a
X
is in
with
set
n
arian ws
( .
c G Line o )( m is description re of
TGv thirdY 1
Consider
the
ase ultiplicativ ALGEBRAS
Section
f
of 2 c
is
natural
annthe
f
n
ab
t, p
eigenfunctions
p so
Apa haracters
ofGtheG= 0A =0 =0 = with and
ar
o
description ) n
is
for
The
( 6 o elian
soZ-adic
v
in
w
A
,
e
s eh
= Zfw
ts nite G^ = )
p ; LIE
. L Tn 3 fol b
asis
1 (
!C lowinggers:
,
get discrete
n
o line the
sp
of (
) eigen
(additiv
ofU(G in + Cl e) eci c
!Ya ~ 1
= )i e
in n
v
imaginary is
g
the e
T
iv ar
o
s simple an
tegers. orm
L n
dimensional = y
1 f
-gr
v
Zg Yu . is r
p
), b c
^
the
t
+ as
( ffZ
b c
; alue
quotien Return =
m o haracters
he
s
asisQ
haracters
n
ade (
It
0 1
s
2
; the compact rop general
Q 2 p f ackets L ne) p of =
o
Z e
1 f
2
p op
L1Gro ctrum ur ; d ie
elemen X
2 in e
AND
n n c ) ( p
ro enter ).
ots
n
algebra
algebr . c
easy 2Gg
algebr To 2
t -graded A 1
. = = 1
6 )CZ A rt erator 1
ula is
ots.n(5) to to a
n 1 1
UpZI f Y( (
subspaces Tk ,
on
or
o D
m o nly 1
! T
o aGf aseUa YNAMICAL
pp Eac
b
f n . g
.
( lgebra
ZG Ac:. f AGgroup ). a
ac ( hec TUp
the
algebra.
c
osite
A +
=
.
AG .WQroup
w
=k (
N n
(
pTXG sub
n 1 hc
1
hen
ote (as S
n
t
+
T
)
Lo wTharacter hen e
t
Talgebr )
i . of
and
a A
t t o ) that
n here n
t ) n
o
he
nd
x
w
i
K hat
. is X f
+
s Cartan
Tthe ( p all YSTEMS
ith
ac{Mo c1 ts
c
\Dynkin"
G Te unction
rator
the
Ccase 1
lear
the is f = elemen is ) o
the set
a ~gr
^
(
o
inear
Zl
G
p
i
that f
brac
n
the
) subalgebra n
cen
o 1:
= a
o 2Tgt
nfUon of
dy
c
ter
cYG= t his =
Zcase diagram basis
f c
k
subspace
unctions s 9
haracter
2c n ounUZunit
p ets
^
,
gc T p
i
C
ase
Txour this
s
:
2
g is + table has with yo
(see
an
ot
in
=
is
2 ,Gi
f
arbitrary ,
' [FFZ] dy
[ZM]
[D]
[VSh] .
[GKL]
[K]
[V]
[SV2]
[SV1]
a ne
con
R Mo
A Theorem
10
emark.
p (1)
1 It tains Lie
n
o
More
U
is Conse
n
algebras
J.
nite
D d'automorphis . A. 1 Lie
G. ao Sa (1989),
br
A.
its
M.
V.
4 A.
Lett.
M.
126
M.
. v
where eliev, o
con airlie,
e no. ershik.
Dixmier.
the
F V Kac.
V ery
r Golenishc
Sa
xactly 143
It
epr
ershik,
dimensional ns
fp
Zeller{Mei -algebr
tin eliev,
A v 4
algebr
6 v
quently,
is
esentatio
.
olynomials lgebr
group
(1993).
i
uous B
In nite
' nstructiv
,
p The
and
i P
nductiv
are Fletc
C Lie
.
ssible
A.
367{378.
as
hev
(1990), e
functions as o
mes. ershik. Continuum the
S
V our
of
er.
cylindric
hoikhet. de ne A.
a
a{Ku theory tudy )
dimensional
V A
ershik. T
algebr nezo
i p
her, as
e (
n with t
J. 121{128.
Za
to
e
limit Z
Pr
one
rm
z A lgebr
p
Math. Tis L
C. gener
as. variable. er
o (
whic a
vertex ,
duits
and v
utations
Gr
functions Th. e
s
New
)
con
Zac its
p
Ph
ade
h a
lo
p References
Lie
tains Leb y analo
ys.
hos. epr o
means lim
ate
ures a
d D.
op
(c M.
examples
oking
W
n
cr d ompletion)
r
L
Lett.
eyl
ois
is
ie
T lgebr on
b
ator. as. gues
only the
et esentation whose for
VERSHIK
rigonometric
s algebr
f
es
c
t o
appl.
o d
g anonic
dev.
a link
B n
ynamic
i roup
ind
nd of
m t
linear
F
218 c L
d'une e W:of al
ak Z co
i unc. gr
this ordinates
as
s Cam n
Math. ly
47
e b
e - ontinuum
nough
a no.
of
al example.
s. ad c
com P systems.
Anal., trigonometric ie
t
(1968),
b.
completion.
w
C Ph
ontr
structur adien lgebra.
2 e een
the
Univ.
aris, 27 g theory
binations
d
isomorphic
Cartan no.
(1989), St.
ys.
t
o agr
this
inductive
101{239.
algebr
1969.
123
e
r
Press,
xtend P
ade
in
ec sub
203{206. Kac{Mo
no. algebr
onstants
d
Za
of
e
1
t
L p
(1993),
etersburg
1991.
monomials
L
the limit
2 .
ie
of to
p
ar sub the
(2000),
algebr
algebr
s
as algebr
et
for
un
Group
12{24.
is
of n 345{352. .
of
as.
as.
Math.
the
algebr
ew gr CMP
' o
as
Kac{ a
f
Ph
a
on
t oup
o
in - e
and
yp
lge-
dy
W
ys.
to e
J
Wyszukiwarka
Podobne podstrony:
Benkart Lie Superalgebras Graded by the Root System A(m,n) (2002) [sharethefiles com]Olver Lie Groups & Differential Equations (2001) [sharethefiles com]Doran New Advances in Geometric Algebra (2001) [sharethefiles com]WITHERSPOON Clifford Correspondence 4 Algebras (2001) [sharethefiles com]Hestenes New Algebraic Framework 4 Comp Geometry [sharethefiles com]Applications of linear algebra to differential equation [sharethefiles com]Milne Polarizations and Grothendieck s Standard Conjectures (2001) [sharethefiles com]Puska Clifford s GA (2001) [sharethefiles com]Krylov Inner Product Saces & Hilbert Spaces (2001) [sharethefiles com]Doran Beyond Euclidean Geometry (2001) [sharethefiles com]Cuartero et al Linearly Compact Algebraic Lie Algebras (1997) [sharethefiles com]Michor Basic Differential Forms for Actions of Lie Groups (1994) [sharethefiles com]04 4?1 Lateral Dynamics SystemsSoroka Linear Odd Poisson Bracket on Grassmann Algebra (2000) [sharethefiles com]Doran Geometric Algebra & Computer Vision [sharethefiles com]Morris On Lie Groups in Varieties of Topological Groups (1991) [sharethefiles com]Moya Metric Clifford Algebra (2002) [sharethefiles com]04b?0 Lateral Dynamics SystemsCzichowski Computer algebra [sharethefiles com]więcej podobnych podstron