ÿþD A N E P R O J E K T O W E - T e c h n i k a p o d z i e m n e j e k s p l o a t a c j i z Bó | G i G I V r i n | - z i m a 2 0 1 5 / 1 6 K R A K Ó W N I E S T A C J O N A R N E
K o t a
K a t . z a g r o |e n i e z a g r o |e n i e z a g r o |e n i e z a g r o |e n i e M i |s z o [ O d l e g Bo [
N r
P o w i e r z c h n i N a j w y |s z a
p r o j e k t u N a z w i s k o i i m i o c h r o n y w o d n e m e t a n o w e p o |a r o w e t p a n i a m i P o k Ba d u p o m i d z y
T e r e n u w a r s t w i c a
n
p o w i e r z c h n i ( s t o p i e D) ( k a t e g o r i a ) ( k l a s a ) ( s t o p i e D) m w a r s t w i c a m i
K p
m = 0 , 1 × n + 1 - 3 0 0
1 B e r c a l K r z y s z t o f I I I V I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
2 B Ba z e n e k M i c h a B I I I I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
3 B o c z a r s k i P i o t r I I I I I I I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
4 C h o j n a c k i A d a m I V I I I V I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
5 C i e [l a M i c h a B V I I I V V I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
6 C i e [l a k A n n a I I I I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
7 C z u w a j M a t e u s z I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
8 w i e r t n i a M i c h a B I I I I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
9 D z i u b r a s M a r i u s z I V I I I I V I V I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
1 0 F r o n t A n d r z e j V I I I I V I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
1 1 G s k a R o m a n I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
1 2 G r u n w a l d R a f a B I I I I I I I I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
1 3 H e r o k P i o t r I I I I I V I I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
m = 0 , 1 × n + 1 - 3 0 0
1 4 J u r e c k i A n d r z e j I V I I I I I I V I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
[ m ] m p p m
K a r b o w s k i m = 0 , 1 × n + 1 - 3 0 0
1 5 V I I I I I V I I I + 2 0 0 m n p m 2 , 5 ÷ 5 c m
R a d o s Ba w [ m ] m p p m
1 6 K l i m e c z e k P a w e B I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m - 3 0 0
m p p m
- 3 0 0
1 7 K l i s i a k A r t u r I I I I I V I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
1 8 K o s e k B e a t a I I I I I I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
1 9 K o t B a r t Bo m i e j I V I I I I V I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
M i t o r a j - 3 0 0
2 0 V I I I V I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
B a r t Bo m i e j m p p m
- 3 0 0
2 1 M i z i o Be k P a t r y k I I I I I V I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
M o zd z i a r s k i - 3 0 0
2 2 I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
M i c h a B m p p m
N i e m c z y k - 3 0 0
2 3 I I I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
W o j c i e c h m p p m
- 3 0 0
2 4 O l c z y k A n n a I V I I I I I V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
2 5 P a c e k M a r e k V I I V V I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
2 6 P a g a c z R a f a B I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
2 7 P a r a M i c h a B I I I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
2 8 P l u c i Ds k i D a m i a n I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
2 9 P Ba t e k K a r o l i n a I V I I I V I V I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 0 S t o p a O l g a V I I I I I I V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
T o m a s z e k - 3 0 0
3 1 I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
M a g d a l e n a m p p m
- 3 0 0
3 2 T o m a s z e k M a r e k I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 3 T y n k a K o n r a d I I I I I I I V I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 4 K o z i e B K a m i l I V I I I I I V I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 5 M a [l a k P i o t r V I I I I V I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 6 P y r e k J a k u b I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
S k w a r e k - 3 0 0
3 7 I I I I V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
P r z e m y s Ba w m p p m
- 3 0 0
3 8 S o j a K a c p e r I I I I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
3 9 S o j k a P a w e B I V I I I I I I V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
4 0 S z o t K a m i l V I I V I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
T o m i c a - 3 0 0
4 1 I I I I V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
A g n i e s z k a m p p m
W o j t a s i a k - 3 0 0
4 2 I I I I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
K a r o l i n a m p p m
W o zn i a k - 3 0 0
4 3 I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
J a r o s Ba w m p p m
- 3 0 0
4 4 W ó j c i k M i l e n a I V I I I I V I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
- 3 0 0
4 5 Z a p a Ba M a t e u s z V I I I I V V I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
m p p m
N a s i e n n i a k - 3 0 0
4 6 I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
M o n i k a m p p m
S i e w i e r s k a - 3 0 0
4 7 I I I I I I I I I I + 2 0 0 m n p m m = 0 , 1 × n [ m ] 2 , 5 ÷ 5 c m
K a r o l i n a m p p m
s k a l a m a p y 1 : 1 0 0 0 0 f o r m a t A 3
p r o f i l g e o l o g i c z n y f o r m a t A 4 - s k a l e d o p a s o w a d o f o r m a t u A 4 ( s z e r o k o [ p r o f i l u o k 2 ÷ 2 , 5 c m )
Wyszukiwarka
Podobne podstrony:
dane do projektuWBiA IBN 7 2 2012 dane do projektuDane do projektuDane do projektu hali s5 IPB 2014 15 (02) (1)dane do projektu 152010 zppiu gr1 cpm cost dane do projektu 32010 zppiu gr1 cpm cost dane do projektu 3dane do pos ?zp IV sem IPB 12WBiA IBN 7 1 2012 dane do projektuDane, założenia do projektu z przedmiotu transport w górnictwie odkrywkowymsem IV(diG) materiały pomocnicze do projektuPUiS sem 6 Wytyczne do projektuwytyczne do projektuwięcej podobnych podstron