1254394722

1254394722



135

Table 5.2 Model selection testing for the effect of mean size-independent body mass (M5), haematocrit (Het), residual basal metabolic ratę (resBMR) and residual summit metabolic ratę (resMsum) on the return ratę of both cohorts during winter. (WAicc: weight of the model, Par : number of parameters, Dev.: Deviance)

Model

AlCc

AAICc

wAICt

Ukelihood

Par

Dev. 1

i

CD(Hct+resMsum) p(.)

76.0

0.0

0.3

1.00

4

67.4

2

<D(Hct+resBMR+resMsum) p(.)

76.6

0.6

0.2

0.73

5

65.7

3

OtM.+M^+Hct+Hct^resBMR+resBMR^resMsum+resMsum2)

P(.)

78.2

2.2

0.1

0.33

10

54.7

4

<D(M,+Hct+resMsum) p(.)

78.2

2.3

0.1

0.32

5

67.4

5

0(M,+Hct+resBMR+resMsum) p(.)

78.7

2.7

0.1

0.26

6

65.4

6

O(resMsum) p(.)

79.1

3.1

0.1

0.21

3

72.7

7

<D(resBMR+resMsum) p(.)

80.3

4.4

0.0

0.11

4

71.8

8

<D(M,+M, ’) p(.)

80.7

4.7

0.0

0.09

4

72.1

9

<D(M,+resMsum) p(.)

80.7

4.8

0.0

0.09

4

72.2

10

<D(M,+resBMR+resMsum) p(.)

81.0

5.1

0.0

0.08

5

70.2

11

<D{resMsum+resMsum2) p(.)

81.1

5.2

0.0

0.08

4

72.6

12

(D(Hct+Hct2) p(.)

87.5

11.6

0.0

0.00

4

78.9

13

0(.) p(.)

87.5

11.6

0.0

0.00

2

83.4

14

O(Hct) p(.)

88.0

12.0

0.0

0.00

3

81.6

15

(D(resBMR) p(.)

89.7

13.7

0.0

0.00

3

83.3

16

<D(M,) p(.)

89.7

13.8

0.0

0.00

3

83.4

17

0(M,+Hct) p(.)

90.0

14.0

0.0

0.00

4

81.4

18

<D{Hct+resBMR) p(.)

90.2

14.2

0.0

0.00

4

81.6

19

0(M,+resBMR) p(.)

91.9

15.9

0.0

0.00

4

83.3

20

0(resBMR+resBMR2) p(.)

91.9

15.9

0.0

0.00

4

83.3

21

CP(M,+Hct+resBMR) p(.)

92.2

16.2

0.0

0.00

5

81.3

mean t = 1.0

The relationship between Msum and residual Msum was linear and strong (r = 0.89, n= 180 p < 0.0001), allowing us to use the regression eąuation (Msum= 1.535+residual Msum) to back-calculate uncorrected Msum. The relationship between winter survival and uncorrected Msum followed a non-linear curve (figurę 5.2a). Below an Msum of 1.17 W, winter survival probability was less than 10%, between 1.20 W and 1.32 W, survival probability inereased linearly reaching 50% at 1.26 W. When birds expressed an average Msum above 1.35 W, winter survival probability was greater than 90% and individuals with an Msum superior to 1.46 W were expected to have 100% chances of survival.

Analyses with raw BMR and raw Msum showed that the within winter return ratę was best explained by a model where the survival probability was dependent on BMR and Msum



Wyszukiwarka

Podobne podstrony:
137 Table 5.3 Model selection testing for the eflfect of mean size-independent body mass (M,), haema
134 Table 5.1 Model selection testing for the effect of period and group (i.e. cohort and age) on th
JPRS-UMS-92-003 16 March 1992ANALYSIS, TESTING 13 The Effect of a Free Surface on the Distribution o
18 Małgorzata Bednarczyk, Ewa Wszendybył-Skulska According to the model presented in Figurę 2, the e
AEC LAB MANUAŁHARTLEY OSCILLATOR AIM: Testing for the performance of BJT Haiiley oscillator for
xvii humidity in (a) or minimal temperaturę in (b). Residual minimal absolute humidity Controls for
36 Testing 1 Top c. (wr bfc For thc tcachcr: It shows the effectiveness of thc teaching/learning I
00208 ?1906ab0bcf2542dac76203983810dc 210 Messina, Montgomery, Keats & Runger Table 4. Average
xj6cutout 1 Autocar, 3 OctotW 1968THE NEW JAGUARCUT-OUT MODEL! Autocar presents for the flrst tlme a
Recovering a Dropped Table Using Oracle Flashback Drop Oracle Flashback Drop cnablcs you to rcversc
83 3.4.4.2 Testing for treatment effects on dependent variables We began our analyses by testing whe
Lew, R. and Galas, K. 2008. ‘Can dictionary skills be taught? The effectiveness of lexicographic tra

więcej podobnych podstron