2949775114

2949775114



3.6. Theorem. For type II exponentiated log-logistic distribution

(l —    ) E[Xl (r, n, m, k)X5 ^ (s, n, m, A;)]

= E[Xl(r, n, m, k)Xj~^(s — 1, n, m, /e)]

(3.21)


+ (j    łlmi(r,„,nl,t)r!>(,,n,i»,H], /3 > j.

otp^s

Proof The proof is easy.

Remark 3.4 Setting m = 0, k = 1 in (3.21), we obtain a recurrence relation for Ratio moments of order statistics for type II exponentiated log-logistic distribution in the form

. <r(j ~ P)

a0(n — s + 1)


')E[XiT.nXi7r!‘\ = E[XlnXizln] + Ąr-^^-E[X‘.„Xi-2'1] /    aB(n — s+1)

Remark 3.5 Putting m = — 1, in Theorem 3.6, we get a recurrence relation for ratio moments of upper k record values from type II exponentiated log-logistic distribution in the form

.    - w

a/3k


)£[(*,


(k) Wy(fc) U(r)> \-AU(a)J


a/3k

Remark 3.6 At7r = n — r + 1 -f J2i=r m*> l<r<j<n, rm£N, k = mn + 1 in (3.16) the product moment of progressive type II censored order statistics of type II exponentiated log-logistic distribution can be obtained.

Remark 3.7 The result is morę generał in the sense that by simply adjusting j — 0 in (3.16), we can get interesting results. For example if j — 0 = — 1 then E ^(I n m fc) ] gives the moments of quotient. For j — 0 > 0, E[Xl(r, n, m, k) XJ-^(s, n, m, /c)] represent product moments, whereas for j < 0 , it is moment of the ratio of two generalized order statistics of different powers.

4. Characterization

This Section contains characterization of type II exponentiated log-logistic distribution by using the conditional expectation of gos .

Let X(r,n,m,k), r — 1,2,... ,n be gos, then from a continuous population with cdf F(x) and pdf f(x), then the conditional pdf of X(s,n,m,k) given X(r,n,m,k) — x, 1 < r < s < n, in view of (1.5) and (1.6), is

C _i

fx(,,n,m,k)\X(r,n,m,k){y\x) = (s _ r J 1)|Cr_1

i<t (4,)

4.1. Theorem. Let X be a non-negative random yariable hatńng an absolutely continuous distribution function F{x) with F(0) = 0 and 0 < F(x) < 1 for all x > 0, then



Wyszukiwarka

Podobne podstrony:
iv) Putting m — —1 in (2.16), to get inverse moments of k record values from type II exponentiated l
720 i) Putting m = 0, k = 1 in (2.12), the explicit formula for the single moments of order statisti
00201 ?4588c1cb831ecdbfa0f0e40ba1f7ac 203 Strategies for Statistical Monitoring of Integral Control
File GPS View Window Help FILTER 0^    II    ^ II NetWork Type w
LOGISTYKA MIX - Działania synchronizujące i harmonizujące ze sobą poszczególne czynności log. LOGIST
oak sih6 28 ■• •jrtSi Figurc 24. Type II, circa 850.
Zrzut pl ?d ons for Firefox Register or Log inOther ApplicationsmoziUa* *ADD-ONSEXTENSIONS
PYTANIA NA EGZAMIN DYPLOMOWY STUDIA II STOPNIA - kierunek LOGISTYKA w roku akademickim 2012-201
H4. D. Kotlorz, A. Kotlorz, Evolution equations for truncated moments of the parton distributions, P
Type II sensitivity occurs when vanation of an mput causes significant changes m the residuals but i
Comment. Math.16 (1988), 207-216. 21.    Existence theorem for multivalued hyperbolic
Universiteit Leidenleiden uniuorsiT^ conTre for UOGUISTICS II A-f LAH CK-CESCLŁSC
log mA/cm tn u ii i 1 ii tu V r log mA/cm v> Ai ói
netter88 Ihe Alyeol.ir Capillary UniiRESPIRATORY PHYSIOLOGY Type I alveolar celi Tightcell Type II a
M. Sc. Programme Registration for semester II III Number of collected credits 16 48 2.
178 transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Bio
31322 oak sih6 28 ■• •jrtSi Figurc 24. Type II, circa 850.
RAK NERKI- patologia molekularna Tumourtype Clear celi Papillary (type I + II) Chromophobic Oncocyti

więcej podobnych podstron