3109102981

3109102981



CHEMIA > DYDAKTYKA • EKOLOGIA ■ METROLOGIA 2010. R. 15. NR 2    119

Przemysław Kosobucki1* i Bogusław Buszewski1

'Katedra Chemii Środowiska i Bioanalityki Wydział Chemii, Uniwersytet Mikołaja Kopernika ul. J. Gagarina 7, 87-100 Toruń email: pkosob@chem.umk.pl

ROLA CHEMII ANALITYCZNEJ W OCHRONIE ŚRODOWISKA

FUNCTION OF ANALYTICAL CHEMISTRY IN ENVIRONMENTAL PROTECTION

Abstrakt: W związku z dynamicznym rozwojem przemysłu w drugiej połowie XX wieku zaobserwować można wzrost znaczenia chemii analitycznej. Jest ona z jednej strony nauką wnoszącą nowe elementy do metodologii chemii analitycznej, np. podstaw teoretycznych metod analitycznych, z drugiej zaś strony ta dziedzina chemii nie może istnieć bez praktycznych zastosowań. Obecnie znajduje ona zastosowanie we wszystkich dziedzinach naszego życia, w tym szczególne znaczenie ma w ochronie środowiska.

Słowa kluczowe: chemia analityczna, ochrona środowiska, ekoanalityka, ciecze jonowe

Abstract: Dynamie development of industry in XX century is directly connected with analytical chemistry. Analytical chemistry is from one point of view scientific activity (evolution of analytical methods), and one the other hand analytical chemistry is associated with practical applications. Now, analytical chemistry is applied in all aspects of our life, and special position have got in environmental protection.

Keywords: analytical chemistry, environmental protection, ecoanalytics, ionic liąuids

W związku z dynamicznym rozwojem przemysłu w drugiej połowie XX wieku można zaobserwować wzrost znaczenia chemii analitycznej. Jest ona z jednej strony nauką wnoszącą nowe    elementy    do metodologii    chemii

analitycznej, np. podstaw teoretycznych    metod

analitycznych, z drugiej zaś strony ta dziedzina chemii nie może istnieć bez praktycznych zastosowań. Obecnie znajduje ona zastosowanie we wszystkich dziedzinach naszego życia, w tym również w ochronie środowiska.

Chemia analityczna zajmuje się analizą pierwiastków, związków chemicznych i ich mieszanin. Wyróżnia się trzy główne rodzaje analizy chemicznej:

1.    Chemiczna analiza jakościowa - jej celem jest ustalenie, z jakich składników składa się dana substancja lub ustalenie, czy dany związek chemiczny w ogóle występuje w analizowanej substancji.

2.    Chemiczna analiza ilościowa - jej celem jest ustalenie ilościowego składu substancji - np. udział procentowy poszczególnych składników w mieszaninie bądź stężenie wybranego składnika.

3.    Chemiczna analiza strukturalna - jej celem jest ustalenie struktury molekularnej badanego związku chemicznego, tj. rodzaj i liczbę pierwiastków tworzących molekuły danego związku oraz struktury [1].

Ochrona środowiska ma na celu całokształt działań (także zaniechanie działań) mających na celu właściwe wykorzystanie oraz odnawianie zasobów i składników środowiska naturalnego. Ochrona środowiska jest więc zespołem idei, środków i działań zmierzających do utrzymania środowiska w stanie zapewniającym optymalne warunki bytowania człowieka i gwarantującym ciągłość najważniejszych procesów w biosferze jako podstawy produkcyjnej i konsumpcyjnej działalności człowieka.

W ujęciu ustawowym (Ustawa „Prawo ochrony środowiska”) ochrona środowiska „to podjęcie lub zaniechanie działań, umożliwiające zachowanie lub przywracanie równowagi przyrodniczej; ochrona ta polega w szczególności na:

racjonalnym kształtowaniu środowiska i gospodarowaniu zasobami środowiska zgodnie z zasadą zrównoważonego rozwoju, przeciwdziałaniu zanieczyszczeniom, przywracaniu elementów przyrodniczych do stanu właściwego" [2].

Stąd rola chemii analitycznej w kontroli tych procesów jest tak ważna.

Chemia analityczna jest głównie wykorzystywana w ochronie środowiska do monitoringu wszelkich elementów ekosystemu, począwszy od powietrza (np. emisja i imisja SOx, NO,), poprzez wody (np. WWA, pozostałości farmaceutyków), ścieki (biogeny), a skończywszy na glebach czy osadach ściekowych (np. metale ciężkie).



Wyszukiwarka

Podobne podstrony:
CHEMIA • DYDAKTYKA > EKOLOGIA • METROLOGIA 2010, R. 15. NR 2    141Andrzej Solecki
142 CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15. NR 2 Tabela I. Rozporządzenia i insmikcj
CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15. NR 2    143 równoważnej
144 CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15. NR 2 Table 3. Half-life times and 99% eq
CHEMIA • DYDAKTYKA « EKOLOGIA • METROLOGIA 2010. R. 15, NR 2    145 CHEMIA • DYDAKTYK
146 CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15. NR 2 Tabela 5. Rezultaty pomiarów
1 12 CHEMIA « DYDAKTYKA • EKOLOGIA • METROLOGIA 2010. K. 15. NR 2 próbek uranu. Podobne wyniki uzysk
CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15, NR 2    113 I Roztwór I
1 14 CHEMIA « DYDAKTYKA • EKOLOGIA • METROLOGIA 2010. K. 15. NR 2 wraz z A. Debierne [1874-1949] otr
CHEMIA • DYDAKTYKA « EKOLOGIA • METROLOGIA 2010. R. 15, NR 2    115 Kolejnymi laureat
1 16 CHEMIA « DYDAKTYKA • EKOLOGIA • METROLOGIA 2010. K. 15. NR 2 355-361. W laboratorium w Paryżu p
CHEMIA • DYDAKTYKA > EKOLOGIA • METROLOGIA 2010, R. 15, NR 2    117 Nadchodzący ro
120 CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15. NR 2417 ROZPORZĄDZENIE MINISTRA
CHEMIA » DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15, NR 2    121 Rys. 2. Podział m
122 CHEMIA ■ DYDAKTYKA • EKOLOGIA ■ METROLOGIA 2010. R. 15. NR 2 Jednocześnie konieczne jest obniżan
CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15, NR 2_105 SPIS TREŚCI Witold WACŁAWEK i Maria
CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010, R. 15, NR 2_107 CONTENTS Witold WACŁAWEK and Maria
CHEMIA • DYDAKTYKA > EKOLOGIA • METROLOGIA 2010, R. 15. NR 2    109Witold Wacławek
1 10 CHEMIA • DYDAKTYKA • EKOLOGIA • METROLOGIA 2010. R. 15. NR 2 szkół (tzw. pensji) dla dziewcząt.

więcej podobnych podstron