Pim, D., Collins, M. and Banks, L. Humań papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 1992; 7: 27-32.
Pim, D., Massimi, P. and Banks, L. Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed celi growth. Oncogene 1997; 15: 257-264.
Pim, D., Storey, A., Thomas, M., Massimi, P. and Banks, L. Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 1994; 9: 1869-1876.
Pines, J. The celi cycle kinases. Se min Cancer Biol 1994; 5: 305-313.
Pise-Masison, C.A., Radonovich, M., Sakaguchi, K., Appella, E. and Brady, J.N. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. J Virol 1998; 72: 6348-6355.
Pluquet, O. and Hainaut, P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 2001; 174: 1-15.
Powell, S.N., DeFrank, J.S., Connell, P., Eogan, M., Preffer, F., Dombkowski, D., Tang, W. and Friend, S. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 1995; 55: 1643-1648.
Prives, C. and Hall, P.A. The p53 pathway. J Pathol 1999; 187: 112-126.
Ravi, R., Bcdi, A. and Fuchs, E.J. CD95 (Fas)-induced caspase-mediated proteolysis of NF-kappaB. Cancer Res 1998a; 58: 882-886.
Ravi, R., Mookerjee, B., van Hensbergen, Y., Bedi, G.C., Giordano, A., El-Deiry, W.S., Fuchs, E.J. and Bedi, A. p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res 1998b; 58: 4531-4536.
Reed, J.C. Bcl-2 family proteins. Oncogene 1998; 17: 3225-3236.
Reisman, 1)., Elkind, N.B., Roy, B., Beamon, J. and Rotter, V. c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Celi Growth Differ 1993; 4: 57-65.
Remm, M., Brain, R. and Jenkins, J.R. The E2 binding sites determine the efficiency of replication for the origin of human papillomavirus type 18. Nucleic Acids Res 1992; 20: 6015-6021.
Richon, V.M., Ramsay, R.G., Rifkind, R.A. and Marks, P.A. Modulation of the c-myb, c-myc and p53 mRNA and protein levels during induced murine erythroleukemia celi differentiation. Oncogene 1989; 4: 165-173.
Roberts, S., Ashmole, I., Rookes, S.M. and Gallimore, P.H. Mutational analysis of the human papillomavirus type 16 El—E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. J Virol 1997; 71: 3554-3562.
Rodriguez, M.S., Thompson, J., Hay, R.T. and Dargcmont, C. Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation. J Biol Chem 1999; 274: 9108-9115.
Romashkova, J.A. and Makarov, S.S. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Naturę 1999; 401: 86-90.
Ruppert, J.M. and Stillman, B. Analysis of a protein-binding domain of p53. Mol Celi Biol 1993; 13: 3811-3820.
Russell, K.J., Wiens, L.W., Demers, G.W., Galloway, D.A., Plon, S.E. and Groudine, M.
Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint- competcnt cells. Cancer Res 1995; 55: 1639-1642.
181