w trybie interaktywnym, interpretując polecenia wprowadzane przez użytkownika, oraz w trybie wsadowym dzięki skryptom tworzonym we wbudowanym i łatwym do opanowania języku programowania. Ten pierwszy tryb jest idealny do testowania nowych pomysłów i eksperymentów numerycznych, drugi przydaje się w większych projektach, gdy przebieg obliczeń nie wymaga interakcji z użytkownikiem i można go zautomatyzować.
Pierwsze środowiska do obliczeń numerycznych powstały dość dawno. Jednak dopiero w ostatniej dekadzie, dzięki dostępności naprawdę szybkich komputerów za stosunkowo niewielką cenę, stały się powszechnie stosowanym narzędziem przez naukowców i inżynierów. Niepisanym standardem wśród programów tego typu jest Matlab firmy MathWorks (http://www.mathworks.com/). Istnieje jednak kilka darmowych programów niewiele ustępujących mu możliwościami. Do najciekawszych należą GNU Octave [19], Scilab [20] i Rlab [21]. GNU Octave to chyba najlepszy darmowy klon Matlaba. Przy zachowaniu kilku zasad [22] użytkownik może przenosić większość swoich skryptów między tymi programami. Składnia Scilaba również wzorowana jest na Matlabie, jednak pełna kompatybilność nie była głównym priorytetem jego autorów. Program wyróżnia się za to przyjaznym, graficznym interfejsem użytkownika. Najmniej kompatybilny z Matlabem jest Rlab, jednak według autora celem nie było sklo-nowanie Matlaba, a jedynie przejęcie jego najlepszych cech i obudowanie ich językiem o poprawionej semantyce.
Z omawianym wcześniej Pythonem rozszerzonym np. o moduł SciPy możemy pracować podobnie, jak ze środowiskami do obliczeń numerycznych, tzn. interaktywnie lub tworząc programy automatyzujące obliczenia. Różnica między tymi środowiskami a Pythonem jest mniej więcej taka, jak między Fortranem a C++ - łatwiej tworzy się w nich programy czysto numeryczne, natomiast trudniej zastosować je do innych celów.
Ludzki mózg tylko w ograniczonym zakresie przyswaja informacje zakodowane w ciągach liczb, natomiast całkiem nieźle radzi sobie z obrazami. Dlatego, o ile to tylko możliwe, powinniśmy prezentować uzyskane w trakcie obliczeń dane w formie graficznej.
Jednym z popularnych wśród naukowców programów do wizualizacji danych jest Gnuplot [23]. Pozwala tworzyć wykresy dwu- i trójwymiarowe, manipulować danymi, zapisywać wyniki do wielu formatów graficznych (patrz dodatek D). Dostępny jest przy tym na większość współczesnych platform
Gnuplot działa w trybie tekstowym. Chociaż moim zdaniem to jedna z jego wielu zalet, zdaję sobie sprawę, że nie wszyscy mogą tak to odbierać. Interesującym programem do wizualizacji danych pracującym w trybie graficznym jest Grace [24]. Jego interfejs jest może na początku mało intuicyjny, ale możliwości imponujące. Podobnie jak Gnuplot, oprócz samej wizualizacji Grace oferuje funkcje do analizy danych i manipulowania nimi. Program działa we wszystkich systemach uniksowych. Istnieją również jego porty na systemy z rodziny Windows, VMS i OS/2.
Innym ciekawym programem graficznym jest SciGraphica [25], która pretenduje do miana klona komercyjnego (i drogiego!) pakietu Origin (http://www. originlab.com/). Wprawdzie nie wiem, w jakim stopniu udało się autorom
10