Struktura i własności stopów Mg-Al-Zn
246. A. Klimpel, Technologie laserowe w spawalnictwie. Wydawnictwo Politechniki Śląskiej, Gliwice, 2011.
247. K. Shimoda. Wstęp do fizyki laserów, PWN, Warszawa, 1993.
248. T. Burakowski, T. Wierzchoń, Inżynieria powierzchni metali, WNT, Warszawa, 1995.
249. J. Kusiński, Przetopieniowa obróbka laserowa, Hutnik - Wiadomości Hutnicze 4 (2002) 166-175.
250. L.A. Dobrzański, T. Tański. S. Malara, M. Król, Structure and properties investigation of an magne-sium alloys processed by heat treatment and laser surface treatment, Materials Science Forum 674 (2011)11-18.
251. J. Damborenea, Surface modification of metals by high power lasers. Surface and Coatings Technology 100-101(1998)377-382.
252. F. Vollertsen, K. Partes, J. Meijer. State of the art of laser hardening and cladding. Proceedings of the 3rd International WLT Conference on Lasers in Manufacturing 2005, Munich, 2005.
253. F. Bachmann. Industrial applications of high power diodę lasers in materials Processing, Applied Surface Science 208-209 (2003) 125-136.
254. L. Li, The advances and characteristics of high-power diodę laser materials processing, Optics and Lasers in Engineering 34 (2000) 231-253.
255. S. Barnes, N. Timms, B. Biyden, High power diodę laser cladding, Journal Materiał Processing Technology 138(2003)411-416.
256. G. Abbas. L. Li, U. Ghazanfar, Z. Liu, Effect of high power diodę laser surface melting on wear resistance of magnesium alloys, Wear 260 (2006) 175-180.
257. G. Abbas, L. Li, Z. Liu. Effect of high pow er diodę laser surface melting on corrosion resistance of magnesium alloys. Proceedings of the 34Ih MATADOR International Conference, Manchester, 2004, 225-234.
258. G. Abbas. Z. Liu, P. Skeldon, Corrosion behaviour of laser-melted magnesium alloys. Applied Surface Science 247 (2005) 347-353.
259. D. Dube, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B. Materials Science and Engineering A 299 (2001) 38-45.
260. Y. Jun, G.P. Sunb, S.S. Jia. Characterization and wear resistance of laser surface melting AZ91D alloy. Journal of Alloys and Compounds 455 (2008) 142-147.
261. J.D. Majumdar, R. Galun, B.L. Mordike, I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy, Materials Science Engineering A 361 (2003) 119-129.
262. A.K. Mondal. S. Kumar, C. Blawert, N.B. Dahotre. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy, Surface And Coating Technolog}- 202 (2008) 3187-3198.
263. T.M. Yue, A.H. Wang, H.C. Man, Improvement in the corrosion resistance of magnesium ZK60/SiC composite by excimer laser surface treatment, Scripta Materialia 38 (1997) 191-198.
264. FORSURF, Foresight wiodących technologii kształtowania własności powierzchni materiałów inżynierskich i biomedycznych, 2009-2012, www.forsurf.pl
265. C. Dreher, Manufacturing yisions, A holistic view of the trends for European manufacturing, in: M. Montorio, M. Taisch, K.-D. Thoben (eds.), Advanced Manufacturing. An ICT and Systems Perspective, MatVis., Tay lor & Francis Group. London, 2007.
266. G.H. Dosch, M.H. Van de Voorde (eds.), Gennesys. White Paper. A New European Partnersliip between Nanomaterials, Science & Nanotechnology and Synchrotron Radiation and Neuron Facilities, Max-Planck-Insititut fur Metalforschung. Stuttgart, 2009.
267. NANOMAT, Wykorzystanie nanotechnologii w nowoczesnych materiałach, 2012, www.nanomat.eitplus.pl
268. Advanced Industrial and Ecological Technologies for Sustainable Development of Poland, www.portaltechnologii.pl/3index/index.html
269. FOREMAT, Technolog} Development Scenarios of Modem Metallic, Ceramic and Composites Materials. Reports of Project Co-Operators. B. Gambin. W. Łojkowski, A. Świderska-Środa (eds.), Unipress Publisher, Radom, 2010.
Literatura 317