background image

 

HUMAN MUTATION  Mutation in Brief #815 (2005) Online

MUTATION IN BRIEF

 

© 2005 WILEY-LISS, INC. 

Received 13 November 2004; accepted revised manuscript 21 March 2005. 

Two ATM Variants and Breast Cancer Risk 

Deborah Thompson

1/8

, Antonis C. Antoniou

1

, Mark Jenkins

2

, Anna Marsh

3

, Xiaoqing Chen

3

Tierney Wayne

4

, Andrea Tesoriero

5

, Roger Milne

2

, Amanda Spurdle

3

, Yvonne Thorstenson

4

Melissa Southey

5

, Graham G. Giles

6

, kConFab Investigators

7

, Kum Kum Khanna

3

,  

Joseph Sambrook

7

, Peter Oefner

4

, David Goldgar

8

, John L. Hopper

2

, Doug Easton

1

 and  

Georgia Chenevix-Trench

3

1

Cancer Research United Kingdom Genetic Epidemiology Unit, University of Cambridge, Cambridge, United 

Kingdom; 

2

Centre for Genetic Epidemiology, The University of Melbourne, Melbourne, Australia; 

3

Queensland 

Institute of Medical Research, Brisbane, Australia; 

4

 Stanford Genome Technology Center, Palo Alto, California; 

5

Genetic Epidemiology Laboratory, Pathology Department, University of Melbourne, Melbourne, Australia; 

6

Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia; 

7

Peter MacCallum Cancer 

Institute, Melbourne, Australia;  

8

Unit of Genetic Epidemiology, International Agency for Research on Cancer, 

Lyon, France 

*Correspondence to:  Dr Georgia Chenevix-Trench, Queensland Institute of Medical Research, c/o Royal Brisbane 

Hospital Post Office, Herston, Queensland 4029 Australia; E-mail: georgiaT@qimr.edu.au 

Grant sponsor: National Health and Medical Research Council, National Breast Cancer Foundation  
 

Communicated by Dvorah Abeliovich 

The ATM gene is mutated in ataxia-telangiectasia (AT). Heterozygote female relatives of AT 
cases have a 2-7fold increased risk of breast cancer.  We previously reported high risks of 
breast cancer associated with certain ATM 
variants. To estimate the risks more precisely, we 
have examined two ATM
 variants, c.1066-6T>G (IVS10-6T>G) and c.4258C>T 
(p.Leu1420Phe), in additional cases and controls from the same Australian cohorts 
previously used to estimate the risk of breast cancer associated with c.1066-6T>G. A total of 
775 and 84 population-based controls were genotyped for the c.1066-6T>G and c.4258C>T 
ATM  
variants respectively, as were index cases from 378 and 373 non-BRCA1/2  breast 
cancer families. Penetrance was estimated by Bayes factor analysis.  
The allele frequencies of 
ATM
 c.1066-6T>G and c.4258C>T estimated from controls were 0.005 (95% CI = 0.002 to 
0.009) and 0.012 (95% CI = 0.001 to 0.042), respectively. We identified three new breast 
cancer families with c.1066-6T>G, and seven families with c.4258C>T.  Combining with the 
two c.1066-6T>G families previously reported, the estimated penetrance to age 70 of c.1066-
6T>G was 17.2% (95% CI = 4.7% to 37.5%). For c.4258C>T, the estimated average 
penetrance was 4.8% (95% CI 1.7% to 10.1%). 
In conclusion, we found no evidence that the 
ATM
 c.4258C>T variant increases breast cancer risk, and little evidence that c.1066-6T>G 
confers an elevated risk.  Analysis of additional families will be necessary to define more 
precisely the risk, if any, associated with c.1066-6T>G. 

 

KEY WORDS: AT; ATM; breast cancer; ataxia telangiectasia mutated; risk; variant 

INTRODUCTION  

Ataxia telangiectasia (AT; MIM# 208900) is a rare autosomal recessive disorder caused by mutations in the 

ATM gene (MIM# 607585) and characterised by progressive neuronal degeneration, immunological deficiency, 
radiosensitivity, and increased cancer risk. At the cellular level, AT is characterized by hypersensitivity to ionizing 
radiation (IR) and other agents that cause double strand breaks in DNA, by defects in G1/S and G2/M checkpoint 
responses, and by defective activation of p53 in response to IR. An association between AT and breast cancer was 
first suggested by Swift et al (Swift et al., 1990)  when they reported an excess of breast

 

cancers in the female 

 

DOI: 10.1002/humu.9344 

background image

2  Thompson et al. 

relatives of AT patients.  Subsequent studies of ATM carriers have found a moderate (two- to sevenfold) increased 
risk of breast cancer (Athma et al., 1996; Geoffroy-Perez et al., 2001; Inskip et al., 1999; Janin et al., 1999; Olsen 
et al., 2001).  Based on an estimated ATM carrier frequency of 1% and a three-fold increased risk of breast cancer, 
ATM heterozygosity may account for 5% of all breast cancer (Easton, 1994), compared with the 1 to 2% 
attributable to mutations in BRCA1 and BRCA2. Other studies have compared the frequency of germline ATM 
variants in breast cancer cases, unselected for family history, with that in controls, but all have been too small to 
detect modest increases in risk (Bishop and Hopper, 1997; Chen et al., 1998; FitzGerald et al., 1997; Shayeghi et 
al., 1998; Vorechovsky et al., 1996). More recently, it has been suggested that the elevated risk of breast cancer 
may be confined to missense mutations of ATM (Gatti et al., 1999). Most studies of germline ATM mutations in 
breast cancer cases have used methods that are biased towards detecting protein-truncating mutations but  recent 
studies that used denaturing high performance liquid chromatography (DHPLC) or single strand conformation 
polymorphism analysis for mutation scanning have found an overall increased frequency of missense variants of 
ATM in breast cancer cases compared with controls (Maillet et al, 2002, Dork et al, 2001, Sommer et al, 2002, 
Sommer et al, 2003, Thorstenson et al, 2003, Teraoka et al., 2001)].  Nevertheless, case-control studies evaluating 
specific, rare, missense ATM variants, have not shown an association with increased risk of breast cancer 
(Bernstein et al., 2003, Bretsky et al., 2003, Spurdle et al, 2002). 

Similarly, linkage analysis of breast cancer families has not provided evidence of a major role for ATM in 

breast cancer predisposition (Cortessis et al., 1993; Wooster et al., 1993).  However, such analyses lacked power to 
detect a moderate effect, particularly in the presence of genetic heterogeneity. If some specific ATM mutations 
confer a high risk of breast cancer, they would occur in rare multiple-case breast cancer families more frequently 
than in unselected breast cancer cases.  Stankovic et al (Stankovic et al., 1998) identified a missense variant in 
ATM (c.7271T>G; p.Val2424Gly), in two AT families,  that was associated with a 13-fold (95% CI 4 to 46) 
increased risk of breast cancer in both heterozygotes and homozygotes. More recently, Thorstenson et al (2003) 
identified the ATM missense variant, c.4258C>T (p. Leu1420Phe), in eight of 202 multiple-case breast-ovarian 
cancer families without BRCA1 or BRCA2 mutations, and in none of 421 controls.  The cumulative risk of breast 
cancer to age 70 was estimated to be almost complete (99%; 95% CI = 25% to 100%).  A study of 82 Dutch early 
onset breast cancer cases, who had been exposed to low-dose IR at an early age and had survived their cancer for 
more than five years, found seven germline ATM variants including the splice site variant, c.1066-6T>G, in three 
cases. c.1066-6T>G was estimated to confer an approximate 9-fold elevation in breast cancer risk (Broeks et al., 
2000). The c.1066-6T>G variant has also been identified in the homozygous state in a German patient of Turkish 
descent with classical AT, and has been shown to result in 90% skipping of exon 11 in homozygotes (resulting in 
premature truncation of the protein) and 40-60% skipping in heterozygotes (as opposed to 15% in wild type 
individuals) (Dork et al., 2001).   

We have previously reported the identification of a single multiple-case breast cancer family with an ATM 

7271T>G variant, and two families with c.1066-6T>G variant, from among 76 non-BRCA1/2 breast cancer 
families (Chenevix-Trench et al., 2002).  The estimated average penetrances to age 70 for ATM 7271T>G and 
c.1066-6T>G were 55% (95% CI = 26% to 88%) and 78% (95% CI = 36% to 99%) respectively. The c.1066-
6T>G variant was not found in any of 262 breast cancer cases unselected for family history, nor in 68 controls 
from an Australian population-based case-control series of breast cancer families. Despite this apparent rarity of 
the c.1066-6T>G variant in Australia, other studies in Holland, Germany and the Czech Republic have observed a 
carrier frequency of 0.6%-1.1% in unselected controls, with unknown personal and/or family histories of breast 
cancer (Broeks et al., 2000; Dork et al., 2001; Lei et al., 2002).  These carrier frequencies in controls are not 
consistent with a highly penetrant mutation. In addition, subsequent studies in the United States, France and 
Australia  found that the c.1066-6T>G variant occurred in 1.3% unilateral breast cancer cases, but in only 0.2% of 
bilateral cases (Bernstein et al., 2003) and at similar frequencies in breast cancer families as in controls (Lindeman 
et al., 2004, Szabo et al., 2004).  

In order to improve the precision of our estimation of breast cancer risk associated with ATM c.1066-6T>G, 

we evaluated its frequency in additional Australian population-based controls and multiple-case breast cancer 
families from the sources previously described (Chenevix-Trench et al., 2002).  We hypothesized that the 
penetrance of c.1066-6T>G might vary depending on the haplotype on which it occurred and so we determined the 
haplotypes, and carried out functional evaluation of the variant in lymphoblastoid cell lines (LCLs) derived from 
both cases and controls heterozygous for the variant, as well as in a single prophylactic mastectomy specimen from 
a carrier. We re-estimated the penetrance of c.1066-6T>G for breast cancer using Bayes factor analysis.  Given the 
recent report that c.4258C>T confers a high risk of breast cancer, we also screened members of the same 
population-based control and multiple-case family cohorts for c.4258C>T variant, and estimated its penetrance. 

background image

Two ATM Variants and Breast Cancer Risk    

3

 

MATERIALS AND METHODS 

Ascertainment 

Controls genotyped for the c.1066-6T>G and c.4258C>T (p.Leu1420Phe) ATM (ACCESSION U82828.1, 

GI:2304970 

ACCESSION 

AAB65827.1) variants were from the Australian Breast Cancer Family 

Study/Australian Breast Cancer Family Registry (ABCFS/ABCFR), a population-based, case-control-family study 
which recruited subjects between 1992-1999 from metropolitan Melbourne and Sydney, Australia via population-
based breast cancer registries (Hopper et al., 1994; Hopper et al., 1999).  Voting is compulsory in Australia and 
female controls, with no personal history of breast cancer, were ascertained through the electoral roll. In addition 
to the 68 controls from the ABCFS/ABCFR tested in our previous study (Chenevix-Trench et al., 2002), we 
genotyped the c.1066-6T>G variant in the remaining 707 controls from the ABCFS/ABCFR (775 controls in total). 
The c.4258C>T variant was genotyped in 84 ABCFS/ABCFR controls, randomly selected from the 775 available.  

 

  The c.1066-6T>G and c.4258C>T variants were also genotyped in a total of 378 (302 from this study, 76 

from the previous study (Chenevix-Trench et al., 2002) and 373 index cases respectively from multiple-case 
families with breast cancer ascertained throughout Australia and New Zealand by The Kathleen Cuningham 
Foundation Consortium for Research into Familial Breast Cancer (kConFab; http://www.kconfab.org, most of 
whom were not available at the time of the previous study. Five index cases were genotyped only for c.1066-
6T>G.

 

These multiple-case families, sequentially ascertained through Familial Cancer Clinics, had four or more 

members with breast or ovarian cancer in the same or adjacent generations, or two individuals with breast cancer 
of whom one had high-risk features (onset before age 40, bilateral breast cancer, male breast cancer or breast plus 
ovarian cancer in the same woman). These criteria are slightly less restrictive than those used in our earlier study in 
which we excluded all families with male breast cancer, reflecting increased confidence in the sensitivity of our  
continued BRCA1 and BRCA2 mutation testing. ATM variant status was not part of the ascertainment criteria. None 
of the kConFab families were found to carry a mutation in BRCA1 or BRCA2 as determined by a variety of testing 
strategies, and were thus defined as non-BRCA1/2 families. The index case in each family was the woman with the 
youngest age at diagnosis of breast cancer in the family from whom blood was available.  DNA from blood was 
used for all germline genotyping except in two relatives of an index case where DNA was extracted from an 
archival paraffin block of gall bladder or normal breast (adjacent to a tumor) because the patients were deceased.  

In the ABCFS/ABCFR, 87.6% of participants reported only Caucasian ancestry, as did 96.9% kConFab 

participants. An additional 2.9% ABCFS/ABCFR and 1.7% kConFab participants reported some Caucasian 
ancestry. All subjects gave informed consent for the study that was approved by the ethics committees of the 
Queensland Institute of Medical Research, the Peter MacCallum Cancer Institute, the University of Melbourne, 
The Cancer Council Victoria and the New South Wales Cancer Council. 

Genotyping 

Genotyping of the variants was performed by DHPLC. For c.1066-6T>G a 350bp product was amplified in 

a 20

µl reaction with 16pmol of each primer (forward 5’-GATCGTGCTGTTCCACTCC-3’ and reverse 5’-

GATGAAAGGATTCCACTGAAAG-3’) using the PCR conditions previously described (Chenevix-Trench et al., 
2002). Cycling conditions were 94

°C for 12 minutes, followed by four sets of 4 cycles of 94°C for 30 seconds, 

63

°C-57°C for 45 seconds and 72°C for 30 seconds, with the annealing temperature dropping 2°C after each set of 

4 cycles, followed by 30 cycles of 94

°C for 30 seconds, 55°C for 45 seconds and 72°C for 30 seconds, and a final 

extension of 72

°C for 7 minutes.   PCR products were then denatured at 95

o

C for five minutes and cooled to 60

o

over 30 minutes (1

o

C/min), and injected onto the Varian Helix System (Varian, Walnut Creek, CA). DHPLC was 

carried out at 54

°C using the Medium method for fragments of 200-400 bp (Varian).  A positive control with the 

relevant variant was included in all DHPLC analysis. All PCR products showing aberrant shifts on DHPLC were 
re-amplified and sequenced with both forward and reverse primers using ABI Prism Big Dye Terminator cycle 
Sequencing Ready reaction kit (PE Applied Biosystem), and analyzed on an ABI 377 sequencer.  For c.4258C>T 
genotyping, a 475bp product was amplified in a 20

µl reaction with 16 pmol of each primer (forward 5’-

CTGAAAATTAAATAAATTGGCAAT-3’ and reverse 5’-AAAACAGGAAGAACAGGATAGAAA-3’).  All 
remaining reagents, cycling conditions, denaturing and slow reannealing were the same as for c.1066-6T>G. The 
heteroduplex was observed at 53

°C using the Medium method as above.  All relatives of index cases identified as 

having the c.4258C>T or c.1066-6T>G variant, and for whom germline DNA as available, were genotyped for the 
relevant variant. 

background image

4  Thompson et al. 

Haplotype and loss of heterozygosity analyses 

Three polymorphic markers at the ATM locus (IVS4+36insAA, IVS25-15delA and D11S2179) were used 

for haplotype and loss of heterozygosity (LOH) analysis, using the PCR primers described by Broeks et al (Broeks 
et al., 2003). PCR products were analysed on an ABI 377 with Genescan software (PE Biosystems, Foster City, 
CA) and loss of heterozygosity was defined as a decrease of one allele by more than 50% (normal:tumor allelic 
ratios of < 0.5 or > 2.0) (Wang et al., 2001) if the flanking markers were informative. DNA from the c.1066-6T>G 
homozygote was used as a control in the haplotype analysis.   

Analysis of splicing and protein truncation in c.1066-6T>G carriers 

RNA was obtained from LCLs of a c.1066-6T>G homozygous AT patient (HA141), five heterozygous 

carriers of c.1066-6T>G and four wildtype individuals using TRI REAGENT (Sigma). In addition, RNA from 
prophylactic mastectomy material was made available by kConFab from one heterozygous carrier of c.1066-6T>G 
who had prophylactic surgery because of her strong family history of breast cancer.  Approximately 1 

µg total 

RNA was reverse transcribed using random hexamer primers and Superscript III Rnase H

-

 reverse transcriptase 

(Invitrogen).  The resulting cDNA was used as template in a 20 

µl PCR reaction with 8 pmol of each primer as 

described by Dork et al (Dork et al., 2001). Cycling conditions were 94

°C for 12 minutes, followed by four sets of 

4 cycles of 94

°C for 30 seconds, 65°C-59°C for 45 seconds and 72°C for 30 seconds, with the annealing 

temperature dropping 2

°C after each set of 4 cycles, followed by 30 cycles of 94°C for 30 seconds, 57°C for 45 

seconds and 72

°C for 30 seconds, and a final extension of 72°C for 7 minutes.  Two fragments were produced, a 

659bp product containing exon 11, and a 489bp fragment lacking exon 11, and these were quantified on an ABI 
377 sequencer.   

For the Protein Truncation Test, LCLs were treated for 4 hours with cycloheximide (100ug/mL) and RNA 

was extracted using the TriPure Isolation Reagent (Roche).  A 1315bp RT-PCR product was amplified using the 
one step Titan

TM

 One Tube RT PCR-system (Roche) with forward 

primer5’GGATCCTAATACGACTCACTATAGGGAGACCACCATGAGTCTAGTACTTAATGATCTGCTT 
(exon 4) and reverse primer 5’GATAGTATCATCAGTAATGGAGACAGCTC (exon 12).  In vitro translation was 
achieved using the Promega TNT 

®

 Coupled Reticulocyte Lysate System incorporating radio labeled S

35

 

methionine (NEN). Products were separated on a 14% SDS-PAGE gel and protein products visualized via 
overnight autoradiography. 

Penetrance analysis 

The penetrance was estimated using a maximum likelihood approach. The analysis was based on the 

likelihood of the observed genotypes for the variant in the family (V), conditional on the proband’s genotype (V

p

), 

the family’s disease phenotype (D). The likelihood is maximised over possible values of the hazard ratio (HR), 

ψ 

for breast cancer associated with the variant: 

(

)

(

)

Pr

,

|

( )

Pr( |

,

, )

Pr

,

|

P

P

V D

L

V D V

V D

ψ

ψ

ψ

ψ

=

=

 

This approach corrects for the ascertainment of families with respect to disease phenotypes. It is 

equivalent to maximising the Bayes’ factor for causality of the variant, as described by Thompson et al. (2003).   

  The analyses were performed using the program MENDEL (Lange et al., 1987). Briefly, the numerator 
likelihood was computed by dividing the likelihood for a full version of the pedigree (all genotypes and 
phenotypes) by the likelihood for a version of the same pedigree where all phenotypes are given, but only the 
proband’s genotype.  The denominator likelihood was computed by dividing the likelihood for a version of the 
pedigree containing all genotypes but no phenotypes by the likelihood of the proband’s genotype alone. We used a 
penetrance model with liability classes based on six age groups; 0 – 29 years, 30 – 39 years, 40 – 49 years, 50 – 59 
years, 60 – 69 years and 70+ years.  All males and all females for whom phenotypic information was not available 
were coded as being unaffected at age 30 years.  The incidence rates used for non-carriers were the population 
rates given for Australia (1988-1992) in Cancer in Five Continents Volume VII (Parkin et al., 1999) (cumulative 
risk of 5.9% by age 70).  Incidence rates in carriers assumed a dominant mode of inheritance and a single hazard 
ratio for all ages.  The overall age-specific incidences in carriers and non-carriers, weighted according to their 
relative frequencies within the population, were constrained to equal the population incidence rate, for each age-
group (Antoniou et al., 2000).  Allele frequencies for each variant were those estimated from the control series.  

background image

Two ATM Variants and Breast Cancer Risk    

5

 

The allowed parameter space for the HR was restricted to the range of HRs compatible with a variant accounting 
for no more than 50% of the total breast cancer familial RR.  Assuming a familial RR of 1.9 (Dite et al., 2003) and 
using the allele frequencies observed for each variant in the population-based controls (see Results) this is 
equivalent to maximising the likelihood over all HRs 

≤8 for c.4258C>T, or ≤11 for c.1066-6G>T. A likelihood 

ratio test was used to evaluate whether the HR differed significantly from 1. 95% likelihood-based confidence 
limits for the HR were also computed:  

{

}

: 2 ln ( ) 2 ln( ( )

3.84

L

L

ψ

ψ

ψ

%

 

where 

ψ

%

 i

s the maximum likelihood estimate of the HR. The penetrance estimates were obtained by applying the 

best-fitting HR to the population incidence rates in the standard way.  The analysis was performed separately for 
the c.1066-6T>G variant and the c.4258C>T variant. 

RESULTS 

We found four ATM c.1066-6T>G carriers among

 

index cases from multiple-case kConFab families, in 

addition to the two previously reported in families B and C (Chenevix-Trench et al., 2002).  Although at the onset 
of the study all the families were defined as non-BRCA1/2 following mutation testing by a variety of methods, one 
of the four c.1066-6T>G carriers was subsequently shown to carry a pathogenic BRCA1 truncating mutation during 
the course of this study. ATM c.1066-6T>G did not co-segregate with the BRCA1 mutation in this family, nor with 
affected status.  The co-occurrence of ATM c.1066-6T>G with a pathogenic BRCA1 mutation in the same 
individual does not influence the evidence for it being a high-risk mutation, because pathogenic mutations in 
BRCA1  and BRCA2 have previously been reported in the same individual (Friedman et al., 1998; Ramus et al., 
1997). Nevertheless, this BRCA1  family was excluded in order to estimate the penetrance due to ATM c.1066-
6T>G  alone. All the index cases of the remaining five c.1066-6T>G families, including families B and C, have 
been found to be BRCA1/2-negative by full sequence analysis.  All available DNA samples (n=19) from the 
remaining three families were then genotyped for c.1066-6T>G, as well as one newly ascertained paternal first 
cousin of the index case of family B (Chenevix-Trench et al., 2002) who was recently diagnosed with bilateral 
breast cancer at age 48. Seven additional carriers were thus identified, including the new family B cousin.  We also 
identified seven ATM c.4258C>T carriers among 373 index cases from multiple-case families that we screened. 
DNA was available from 68 family members of these index cases and further genotyping identified a total of 20 
c.4258C>T carriers.   

In order to obtain a precise estimate of the frequency of ATM c.1066-6T>G, we screened 707 additional 

controls from the ABCFS/ABCFR and found seven c.1066-6T>G carriers, none of whom had a family history of 
breast cancer. This relatively high frequency of c.1066-6T>G is different, but not significantly so, from our 
previous finding of no carriers among 262 cases and 68 controls from the ABCFS/ABCFR.  The combined data 
from 775 population-based controls from Australia gave an allele frequency estimate of 0.005 (95% CI = 0.002 to 
0.009). Fewer controls were genotyped for c.4258C>T than for c.1066-6T>G, because two carriers were found 
among the first 84 controls genotyped (neither of whom had a family history of breast cancer), suggesting that the 
variant is not disease-causing (estimated allele frequency = 0.012, 95% CI 0.001 to 0.042).   

We found that every c.1066-6T>G variant identified in the kConFab families, and the ABCFS/ABCFR 

controls, occurred on the same haplotype (insAA at IVS4+36insAA, delA at IVS25-15delA, and allele 140 at 
D11S2179). Analysis of three tumors from c.1066-6T>G carriers showed that one did not undergo LOH (as we 
reported previously in a fourth tumour from family B (Chenevix-Trench et al., 2002)), one showed loss of the 
wildtype allele and one showed loss of the variant allele. We generated LCLs from three kConFab cases carrying 
the c.1066-6T>G variant, and from two of the control carriers, as well as four wildtype controls. RT-PCR analysis, 
using PCR primers to exons 10 and 12, showed that in all these LCLs approximately equal amounts of each 
mRNA species (with and without exon 11) were expressed (Fig. 1).  A similar result was found in the single 
prophylactic mastectomy specimen examined.  Wildtype LCLs showed predominance (approximately 95%) of the 
exon 11-containing mRNA species but the LCL from a c.1066-6T>G homozygous individual showed expression 
of mainly (approximately 95%) the exon 11-deleted mRNA.   

We confirmed the relative proportions of products with and without exon 11 in individuals of different 

genotypes at the protein level using the Protein Truncation Test.  DNA from ATM c.1066-6T>G heterozygous 
LCLs derived from six kConFab cases and two ABCFS/ABCFR controls were compared with wildtype individuals 
by PTT.  In all heterozygous individuals, two bands were observed in approximately equal amounts but analysis of 
wild type individuals showed a predominance of the larger, wildtype band and the homozygous mutant showed 
mainly the smaller band (data not shown).   These results indicate that the ATM c.1066-6T>G variant behaves in a 

 

background image

6  Thompson et al. 

similar manner in LCLs derived from women with and without breast cancer, and regardless of their family history 
of breast cancer.   

          
 
                        
 
 

hom LC

L (HA141)   

 

het

 LC

L - cont

rol

 

N

egative control 

 

het LCL - case 

het LCL - case 

 
 

wt LCL  

wt LCL 

                      

Marke

het

 PM 

 
 
                    

                       

 

500bp 

 
 
 
 

Figure 1. Results of ATM exon 11 RT-PCR showing both 659 bp and 489 bp (exon 11 deleted) bands in all lanes except the
homozygote c.1066-6T>G carrier. wt – wild type, het – c.1066-6T>G heterozygote; hom – c.1066-6T>G homozygote LCL –
lymphoblastoid cell line; PM – prophylactic mastectomy. 

 
  The likelihood ratio test provided no evidence that the c.4258C>T variant is associated with breast cancer 

risk (p=0.6).  The best fitting HR for this variant was 0.8 (95% CI = 0.3 to 1.8), equivalent to a penetrance of 4.8% 
by age 70 years (95% CI = 1.7% to 10.1%).  Estimates were robust to misspecification of the allele frequency (the 
lower and upper bounds of the 95% CI gave best fitting HRs of 0.8 and 0.7 respectively). The best fitting HR for 
the five c.1066-6T>G families was 3.4 (95% CI = 0.80 to 11.0, p = 0.1), equivalent to a penetrance of 17.2% (95% 
CI = 4.7% to 37.5%) to age 70 i.e. no significant increase in risk. There was substantial heterogeneity between 
families (p = 0.009) (Fig. 2); the best-fitting HR for the three families reported for the first time here was just 0.51 
(95% CI = 0.03 to 3.5, p = 0.5), whereas the best-fitting HR for the two families including in the original study was 
at the upper boundary of the possible HRs (HR = 11.0, p = 0.003).   

Since the overall penetrance estimate was considerably lower than previously reported (Chenevix-Trench et 

al., 2002), we reanalyzed the original dataset from the first two families identified with the c.1066-6T>G variant to 
determine whether these differences were due to the new methodology for estimating causality, or the inclusion of 
additional families and family members that had subsequently been genotyped.   The best fitting HR for the 
original dataset and the analysis method used in the current study (without restricting the HR, for equivalence with 
the previous analysis) gave a penetrance to age 70 of 55.4% (95% CI = 11.0% to 61.1%, p = 0.01).  Although this 
is lower than the estimate of 78% obtained from the segregation analysis in the original study (Chenevix-Trench et 
al., 2002), it is still considerably higher than the estimate of 17.2% obtained in the present study, suggesting that 
the change in effect size between the two studies is chiefly attributable to changes in the available data, rather than 
in the statistical methodology. 

background image

Two ATM Variants and Breast Cancer Risk    

7

 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

0.001

0.01

0.1

1

10

100

0

10

20

30

40

50

Hazard Ratio

Bayes F

a

ctor

ped 3

ped 5

ped 2

ped 1

ped 4

60

 

Figure 2.  Bayes factors for the ATM IVS10-6T>G variant at different hazard ratios, showing substantial heterogeneity between 
families, with only the two families included in the original study (pedigrees 3 and 5 are the updated versions of the previously 
published families B and C) providing evidence in favor of causality for this variant.   

 

 
 

DISCUSSION 

 

In genotyping index patients from non-BRCA1/2  families for two ATM variants, c.1066-6T>G and 

c.4258C>T, we identified five index cases with the c.1066-6T>G variant (including two reported previously 
(Chenevix-Trench et al., 2002)), and seven with 1420L>F.  We also genotyped a large number of population-based 
controls with no personal history of breast cancer, and found that c.1066-6T>G occurred at a frequency of 0.005 
(95% CI = 0.002 to 0.009), and c.4258C>T at 0.012 (95% CI = 0.001 to 0.042).  These high control frequencies 
were inconsistent with previous high penetrance estimates of breast cancer (penetrance estimates to age 70 of 78% 
(95% CI = 36% to 99%) for c.1066-6T>G (Chenevix-Trench et al., 2002) and 99% (95% CI = 25% to 100%) for 
c.4258C>T (Thorstenson et al., 2003).  To explain the inconsistency between the previous estimates of the 
penetrance of c.1066-6T>G (Chenevix-Trench et al., 2002) and its high allele frequency we originally 
hypothesised that the variant occurred on different haplotypes and that the haplotype background influenced the 
effect of the variant on splicing. Haplotype analysis showed that for all individuals, whether from non-BRCA1/2 
families or controls, the ATM c.1066-6T>G variant occurred on the same M5 haplotype found in the Dutch breast 
cancer cases (Broeks et al., 2003), and the homozygote AT patient with this variant (Dork et al., 2001). Consistent 
with the common haplotype background of all the carriers, we found no differences in the splicing phenotype 
between LCLs derived from different carriers, nor in their behavior in the Protein Truncating Test.   

Using the data from all five families with ATM c.1066-6T>G, the excess risk of breast cancer associated 

with the variant was not statistically significant. The new penetrance estimate for ATM c.1066-6T>G (17.2% to age 
70, 95% CI = 4.7% to 37.5%) was substantially lower than our original estimate of 78% (95% CI = 36% to 99%) 
(Chenevix-Trench et al., 2002).   A re-analysis of the original data, using the method used throughout the present 
analysis, confirmed that the previous high estimate of penetrance was broadly appropriate for the first two families 
analyzed, in which ATM IVS10-6T >G segregated well with breast cancer. We conclude that the lower penetrance 
estimate in the current analysis of all five families is mainly due to the larger dataset, rather than to the method of 
analysis.  Nevertheless, the confidence intervals on the penetrance estimates are still wide, and more multiple-case 
breast cancer families with the c.1066-6T>G variant, and multiple available blood samples, will need to be 

background image

8  Thompson et al. 

identified to refine the penetrance estimates, and narrow the confidence intervals.  We also note that the method of 
analysis makes no allowance for the possible effects of other causes of familial aggregation. While this does not 
invalidate the test statistics, it may imply that the penetrance estimates are larger than those which would apply to 
population-based series.  

The pathogenicity of the c.1066-6T>G variant is also unclear with respect to AT.   The aberrant splicing 

observed in lymphocytes and LCLs is consistent with a pathogenic mutation, and this is supported by its 
occurrence in a single homozygote patient with classical AT who appears to have no other ATM mutations and 
shows aberrant splicing and less than 5% normal ATM protein (Dork et al., 2001).  However, c.1066-6T>G 
appears to be too frequent in controls to be a pathogenic AT mutation (the allele frequency estimate here, 0.005, is 
twice some estimates of the combined frequency of all AT-pathogenic ATM mutations, e.g. Olsen et al., 2001) and 
has never been reported in a compound heterozygote AT patient.  The rarity of this variant in AT cases is also 
difficult to explain if c.1066-6T>G is a benign polymorphism since almost 1% of AT patients would be expected 
to carry the variant by chance, and c.1066-6T>G can be detected by PTT and other standard diagnostic methods.  
However, it is possible that the variant is not always recorded in the PTT assay because normal splicing of exon 11 
is ‘leaky’ resulting in a quantitative change in the assay, rather than a qualitative change. 

We found no evidence that the ATM c.4258C>T variant increased breast cancer risk (HR = 0.8, 95% CI = 

0.3 – 1.8), which is consistent with published analyses of the functional consequences of this variant (Gutierrez-
Enriquez et al., 2004). Therefore, in conclusion, there is currently little evidence that c.1066-6T>G confers an 
elevated breast cancer risk, and even less for an increased risk associated with c.4258C>T. The loss of the c.1066-
6T>G allele in some of the tumours, as we and others have reported (Broeks et al., 2000), is consistent with the 
conclusions from our penetrance analysis. Analysis of additional families, in which multiple individuals can be 
genotyped, will be necessary to more precisely define the risk, if any, associated with c.1066-6T>G and to 
determine whether this ATM variant modifies the penetrance of BRCA1/2 mutations.  Therefore, findings of 
increased risk in previous studies should not be used clinically to make decisions about risk reduction strategies.  

ACKNOWLEDGMENTS 

 
  We wish to thank Thilo Dork for the gift of the HA141 LCL from the c.1066-6T>G homozygous patient, 

Margaret Cummings for review of archival pathology blocks, Chris Clarke and Lucy Webster for RNA from the 
prophylactic mastectomy specimen, Dale Nyholt for useful discussions, and Heather Thorne, Sandra Picken, 
Eveline Niedermayr and all the kConFab research nurses and staff for their contributions to this resource. kConFab 
is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research 
Council (NHMRC) and by the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, 
Tasmania and South Australia, and the Cancer Foundation of Western Australia. GCT, JH, and KK are NHMRC 
Research Fellows, and ABS is funded by an NHMRC Career Development Award. This work is supported by 
grants from the NHMRC and the Susan G. Komen Foundation. DT, AA, and DFE are supported by Cancer 
Research U.K. DT was supported by an IARC postdoctoral fellowship. 
 

REFERENCES 

 

Antoniou, A.C., Gayther, S.A., Stratton, J.F., Ponder, B.A., Easton, D.F. 2000. Risk models for familial ovarian and breast 

cancer. Genet Epidemiol. Feb;18:173-90. 

 Athma, P., Rappaport, R. and Swift, M.,1996. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are 
predisposed to breast cancer. Cancer Genet Cytogenet, 92(2): 130-4. 

Bernstein, J.L. et al., 2003. ATM variants 7271T>G and IVS10-6T>G among women with unilateral and bilateral breast cancer. 

Br J Cancer, 89(8): 1513-6. 

Bishop, D.T. and Hopper, J., 1997. AT-tributable risks? Nat Genet, 15(3): 226. 

Bretsky, P. et al., 2003. The relationship between twenty missense ATM variants and breast cancer risk: the Multiethnic Cohort. 

Cancer Epidemiol Biomarkers Prev, 12(8): 733-8. 

Broeks, A. et al., 2003. IVS10-6T>G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat, 21(5): 521-8. 

Broeks, A. et al., 2000. ATM-heterozygous germline mutations contribute to breast cancer- susceptibility. Am J Hum Genet, 

66(2): 494-500. 

background image

Two ATM Variants and Breast Cancer Risk    

9

 

Chen, J., Birkholtz, G.G., Lindblom, P., Rubio, C. and Lindblom, A., 1998. The role of ataxia-telangiectasia heterozygotes in 

familial breast cancer. Cancer Res, 58(7): 1376-9. 

Chenevix-Trench, G. et al., 2002. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst, 94(3): 205-

15. 

Cortessis, V. et al., 1993. Linkage analysis of DRD2, a marker linked to the ataxia-telangiectasia gene, in 64 families with 

premenopausal bilateral breast cancer. Cancer Res, 53(21): 5083-6. 

Dite, G.S., Jenkins, M.A., Southey, M.C., Hocking, J.S., Giles, G.G., McCredie, M.R., Venter, D.J., Hopper, J.L.  Familial 

risks, early-onset breast cancer, and BRCA1 and BRCA2 germline mutations.  2003. J Natl Cancer Inst. 95(6):448-57. 

Dork, T. et al., 2001. Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer 

Res, 61(20): 7608-15. 

Easton, D.F., 1994. Cancer risks in AT heterozygotes. Int J Radiat Biol, 66(6 Suppl): S177-82. 

FitzGerald, M.G. et al., 1997. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet, 15(3): 

307-10. 

Friedman, E. et al., 1998. Double heterozygotes for the Ashkenazi founder mutations in BRCA1 and BRCA2 genes. Am J Hum 

Genet, 63(4): 1224-7. 

Gatti, R.A., Tward, A. and Concannon, P., 1999. Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic 

differences between missense and truncating mutations. Mol Genet Metab, 68(4): 419-23. 

Geoffroy-Perez, B. et al., 2001. Cancer risk in heterozygotes for ataxia-telangiectasia. Int J Cancer, 93(2): 288-93. 

Gutierrez-Enriquez S., Fernet M., Dork T., Bremer M., Lauge A., Stoppa-Lyonnet D., Moullan N., Angele S., Hall J.   

Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer. 2004 
Jun;40(2):109-19.  

Hopper, J.L. et al., 1999. Design and analysis issues in a population-based, case-control-family study of the genetic 

epidemiology of breast cancer and the Co-operative Family Registry for Breast Cancer Studies (CFRBCS). J Natl Cancer 
Inst Monogr, 26: 95-100. 

Hopper, J.L., Giles, G.G., McCredie, M.R.E. and Boyle, P., 1994. Background, rationale and protocol for a case-control-family 

study of breast cancer. Breast, 3: 79-86. 

Inskip, H.M., Kinlen, L.J., Taylor, A.M., Woods, C.G. and Arlett, C.F., 1999. Risk of breast cancer and other cancers in 

heterozygotes for ataxia- telangiectasia. Br J Cancer, 79(7-8): 1304-7. 

Janin, N. et al., 1999. Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families. Br 

J Cancer, 80(7): 1042-5. 

Lange, K., Weeks, D. and Boehnke, M., 1988. Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE. Genet 

Epidemiol, 5(6): 471-2. 

Lei, H., Pospisilova, D., Lindblom, A. and Vorechovsky, I., 2002. Re: Dominant negative ATM mutations in breast cancer 

families. J Natl Cancer Inst, 94(12): 951-2; author reply 952. 

Lindeman G.J., Hiew M., Visvader J.E., Leary J., Field M., Gaff C.L., Gardner R.J., Trainor K., Cheetham G., Suthers G., Kirk 

J.   Frequency of the ATM IVS10-6T-->G variant in Australian multiple-case breast cancer families. Breast Cancer Res. 
2004;6(4):R401-7. Epub 2004 Jun 02.  

Maillet, P. et al., 2002. Constitutional alterations of the ATM gene in early onset sporadic breast cancer. J Med Genet, 39(10): 

751-3. 

Olsen, J.H. et al., 2001. Cancer in Patients With Ataxia-Telangiectasia and in Their Relatives in the Nordic Countries. J Natl 

Cancer Inst, 93(2): 121-127. 

Parkin, D.M., Pisani, P. and Ferlay, J., 1999. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer, 

80: 827-841. 

background image

10 Thompson et al. 

Petersen, G.M., Parmigiani, G. and Thomas, D., 1998. Missense mutations in disease genes: a Bayesian approach to evaluate 

causality. Am J Hum Genet, 62(6): 1516-24. 

Ramus, S.J. et al., 1997. A breast/ovarian cancer patient with germline mutations in both BRCA1 and BRCA2. Nat Genet, 

15(1): 14-5. 

Shayeghi, M. et al., 1998. Heterozygosity for mutations in the ataxia telangiectasia gene is not a major cause of radiotherapy 

complications in breast cancer patients. Br J Cancer, 78(7): 922-7. 

Sommer, S.S. et al., 2002. Elevated frequency of ATM gene missense mutations in breast cancer relative to ethnically matched 

controls. Cancer Genet Cytogenet, 134(1): 25-32. 

Sommer, S.S. et al., 2003. ATM missense mutations are frequent in patients with breast cancer. Cancer Genet Cytogenet, 

145(2): 115-20. 

Spurdle, A.B., Hopper, J.L., Chen, X., McCredie, M.R.E., Giles, G.G., Newman, B., Chenevix-Trench, G. Khanna, K.K., 2002. 

No evidence for association of ataxia-telangeictasia mutated gene T2119C and C3161C amino acid sustitution variants with 
risk of breast cancer. Breat Cancer Research, 4: R15. 

Stankovic, T. et al., 1998. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of 

mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet, 62(2): 334-45. 

Swift, M., Chase, C.L. and Morrell, D., 1990. Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet 

Cytogenet, 46(1): 21-7. 

Szabo C.I., Schutte M., Broeks A., Houwing-Duistermaat J.J., Thorstenson Y.R., Durocher F., Oldenburg R.A., Wasielewski 

M., Odefrey F., Thompson D., Floore A.N., Kraan J., Klijn J.G., van den Ouweland A.M., Wagner T.M., Devilee P., Simard 
J., van 't Veer L.J., Goldgar D.E., Meijers-Heijboer H.  Are ATM mutations 7271T-->G and IVS10-6T-->G really high-risk 
breast cancer-susceptibility alleles? Cancer Res. 2004 Feb 1;64(3):840-3.  

Teraoka S.N.. Malone K.E., Doody D.R., Suter N.M., Ostrander E.A., Daling J.R., Concannon P..  Increased frequency of ATM 

mutations in breast carcinoma patients with early onset disease and positive family history. Cancer. 2001 Aug 1;92(3):479-
87.  

Thompson, D., Easton, D.F. and Goldgar, D.E., 2003. A full-likelihood method for the evaluation of causality of sequence 

variants from family data. Am J Hum Genet, 73(3): 652-5. 

Thorstenson, Y.R. et al., 2003. Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res, 63(12): 

3325-33. 

Vorechovsky, I. et al., 1996. The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no 

evidence for mutation. Cancer Res, 56(12): 2726-32. 

Wang, V.W., Bell, D.A., Berkowitz, R.S. and Mok, S.C., 2001. Whole genome amplification and high-throughput allelotyping 

identified five distinct deletion regions on chromosomes 5 and 6 in microdissected early-stage ovarian tumors. Cancer Res, 
61(10): 4169-74. 

Wooster, R. et al., 1993. Absence of linkage to the ataxia telangiectasia locus in familial breast cancer. Hum Genet, 92(1): 91-4. 

 


Document Outline