Budowa komórki

Ściana komórkowa [edytuj]

Kształt komórki determinuje ściana komórkowa, która dodatkowo chroni komórkę przed pęknięciem w wyniku zwiększonego napływu wody do jej wnętrza. U bakterii właściwych (czyli także sinic) zbudowana jest z biopolimeru peptydowo-wielocukrowego – mureiny, zaś u archeanów (archeabakterii) głównym jej składnikiem jest pseudomureina lub białka ułożone w tzw. warstwę S. Część archeanów i wszystkie mikoplazmy (grupa bakterii) nie posiadają ściany komórkowej.

U bakterii grubość ściany komórkowej warunkuje, jaki będzie rezultat barwienia metodą Grama i de facto jest podstawą klasyfikacji bakterii na Gram-dodatnie i Gram-ujemne. Te pierwsze (G+) mają ścianę o grubości 15-50 nm, zaś drugie (G-) kilkukrotnie cieńszą, 2-10 nm. Różnica ta pociąga za sobą także odmienności w fizjologii i wrażliwości na leki między obiema grupami bakterii.

Otoczka [edytuj]

Większość bakterii żyjących w glebie, wodzie lub pasożytujących wytwarza śluzowate otoczki, pod względem chemicznym zbudowane z wielocukrów lub z białek (często glikozylowanych). Otoczka taka pełni funkcję ochronną przed wyschnięciem oraz, u pasożytów, uniemożliwia związanie białek powierzchniowych bakterii przez receptory komórek żernych i zarazem fagocytozę zarazka[5].

Rzęski [edytuj]

Występujące u mikroorganizmów rzęski – różniące się budową od rzęsek występujących u Eucaryota – umożliwiają ruch, zaś fimbrie pozwalają przylegać do komórek zwierzęcych (np. w celu zainfekowania ich) lub uczestniczyć w jednym z procesów parapłciowej wymiany informacji genetycznej między różnymi osobnikami tego samego gatunku, tzw. koniugacji. Rzęski składają się ze spiralnie skręconych włókien flageliny, zaś fimbrie z cienkich delikatnych białkowych rurek sterczących z cytoplazmy.

Błona komórkowa [edytuj]

Błona komórkowa zbudowana jest z dwóch warstw fosfolipidów oraz zakotwiczonych w nich białek – jest to typowy dla wszystkich organizmów model budowy błony plazmatycznej. W stosunku do jądrowych odmienny jest skład chemiczny błony: u akariontów dominują nasycone kwasy tłuszczowe (rzadkie u Eucaryota) oraz nie występuje cholesterol (pomijając aparat fotosyntezy sinic). U Archea błona komórkowa zbudowana jest zupełnie inaczej; obecne są w niej etery kwasów tłuszczowych przy jednoczesnym braku fosfolipidów, często też występuje tylko jedna pojedyncza warstwa dimerów tych eterów[6].

U bakterii gramdodatnich błona cytoplazmatyczna występuje jedynie po wewnętrznej stronie, zaś u gramujemnych po obu stronach ściany komórkowej.

Błona komórkowa jest niezbędna do przeżycia mikroorganizmu. Odpowiada za pobieranie wody, soli mineralnych i pokarmu, wydzielanie substancji na zewnątrz (np. enzymów trawiennych), odbieranie bodźców ze środowiska zewnętrznego oraz procesy metaboliczne komórki. Możliwe jest to dzięki zespołom białek transporterów cząstek pokarmu, przenośników elektronów, białek systemu sekrecji, itd.

Cytoplazma i genofor [edytuj]

Przestrzeń ograniczoną błoną wypełnia cytoplazma (cytozol). Jest to układ koloidalny białek zawieszonych w roztworze wodnym, także białek katalizujących reakcje biochemiczne komórki (enzymów).

Materiał genetyczny stanowi kolisty[7], dwuniciowy DNA, zwany genoforem, nukleoidem lub chromosomem bakteryjnym. DNA komórki nie jest, w przeciwieństwie do Eucaryota, osłonięty błoną i pływa dość swobodnie w cytoplazmie (rzadkością jest, że genofor związany jest z błoną komórkową). Genofor zajmuje stosunkowo małą powierzchnię do swojej długości w wyniku silnego poskręcania stabilizowanego przez białka histonopodobne lub, u Archea, przez histony. Częstym jest, że oprócz nukleoidu w komórce mikroorganizmów występują znacznie mniejsze, również koliste cząsteczki DNA zwane plazmidami, które warunkują dodatkowe cechy, jak na przykład oporność na antybiotyki, czy zdolność wytwarzania toksyn. Plazmidy mogą być przekazywane na komórki potomne lub na inne komórki w procesach koniugacji, transformacji i transdukcji, czego konsekwencją jest przekazanie zakodowanych w plazmidzie właściwości.

Rybosomy [edytuj]

Gęsto rozsiane w komórce rybosomy zbudowane są, podobnie jak u jądrowych, z RNA[8]. Morfologicznie także składają się z większej i mniejszej podjednostki, które łączą się ze sobą po przyłączeniu mRNA do kompleksu inicjującego[9]. Stanowią miejsce syntezy białek.

Podjednostka mniejsza ma stałą sedymentacji 30S, zaś duża 50S. Współczynnik sedymentacji całego rybosomu wynosi 70S (dla porównania, u Eucaryota wynosi 80S).

Chromatofor [edytuj]

Aparat fotosyntezychromatofor – występuje u sinic (cyjanobakterii) i niektórych Proteobacteria. U proteobakterii chromatofor ma formę kulistych lub jajowatych tworów zawierających chlorofil b, zwany bakteriochlorofilem, oraz różne pigmenty karetonoidowe. U cyjanobakterii chromatofory, zwane tutaj także tylakoidami, mają kształt dysków i zawierają chlorofil a oraz fikoerytrynę i fikocyjaninę (fikobiliny). U tych grup różny jest oprócz budowy aparatów fotosyntezy także jej przebieg.

Pozostałe elementy komórkowe u prokariontów [edytuj]

U niektórych bakterii (kolejno: laseczek, promieniowców i bakterii śluzowych) występują czasem w komórkach endospory, konidia lub mikrocysty pełniące funkcję form przetrwalnych. Są to twory spoczynkowe, pozwalające przeżyć niekorzystne warunki środowiska.

Budowa komórki eukariotycznej

Komórki zarodkowe myszy

Budowa komórki zwierzęcej: 1 – jąderko; 2 – błona jądra komórkowego; 3 – rybosom; 4 – pęcherzyk; 5 – szorstkie retikulum endoplazmatyczne; 6 – aparat Golgiego; 7 – mikrotubule; 8 – gładkie retikulum endoplazmatyczne; 9 – mitochondrium; 10 – wakuole; 11 – cytoplazma; 12 – lizosom; 13 – centriola.

Budowa typowej komórki roślinnej: a – plasmodesma; b – błona komórkowa; c – ściana komórkowa; 1 – chloroplast (d – błona tylakoidu; f – ziarnistość w stromie); 2 – wakuola (f – wakuola; g – tonoplast); h – mitochondrium; i – peroksysom; j – cytoplazma; k – pęcherzyki; l – szorstkie ER; 3 – jądro (m – pory w otoczce jądrowej; n – błona jądrowa; o – jąderko); p – rybosom; q – gładkie ER; r, s – aparat Golgiego; t – elementy cytoszkieletu.

Komórki eukariotyczne są większe od prokariotycznych – średnio ich długość mieści się w granicach 10-100 μm. Część komórek Eucaryota jest jednak jeszcze większa, jak np. jaja, czy niektóre neurony.

Kształt komórki u roślin i grzybów determinuje ściana komórkowa, zaś u zwierząt – organizmów, które nie posiadają ściany komórkowej – głównie środowisko zewnętrzne (zwłaszcza ciśnienie osmotyczne).

Ściana komórkowa

Ściana komórkowa grzybów zbudowana jest najczęściej z chityny (rzadziej z celulozy i innych związków), zaś roślin z włókien celulozowych tworzących mikrofibryle zatopione w macierzy. Macierz ta składa się głównie z wody, hemiceluloz, pektyn i białek.

U roślin, wraz z wiekiem, zmieniają się skład i właściwości ściany komórkowej. Tzw. ścianę pierwotną, pojawiającą się w komórce roślinnej zaraz po jej powstaniu, cechuje duża wytrzymałość na rozciąganie oraz stosunkowo duża zawartość wody. Często pierwotna ściana roślin jest cienka, choć nie jest to regułą. W momencie zakończenia wzrostu komórki, między protoplastem (żywą częścią komórki, czyli błoną i organellami), a ścianą pierwotną, powstaje Ściana wtórna. Cechuje ją mniejsza zawartość wody, a większa celulozy i hemiceluloz oraz odporność na ściskanie i inne bodźce mechaniczne. Często jest gruba, choć to także nie jest regułą. Wtórna ściana komórkowa roślin może ulegać różnym modyfikacjom, jak np. inkrustacja.

Błona komórkowa i mechanizmy poruszania się komórek

Błona komórkowa (plazmolemma) otacza całą komórkę. U eukariontów posiadających ścianę komórkową zawsze występuje po stronie wewnętrznej tej ściany. Plazmolemma zbudowana jest podobnie, jak u bakterii właściwych: składa się z dwóch warstw fosfolipidów oraz zanurzonych w nich białek. W budowie lipidów błonowych komórek jądrowców dominują nienasycone kwasy tłuszczowe. Znaczny (5-25%) jest także udział cholesterolu[10].

Białka zanurzone w plazmolemmie pełnią funkcje receptorów, białek kanałowych, czy enzymatycznych, które odpowiadają za pobieranie wody, soli mineralnych i substancji odżywczych, wydzielanie substancji na zewnątrz (np. produktów przemiany materii), obieranie bodźców ze środowiska zewnętrznego, itd. Ponadto struktury białek wraz z skoordynowanymi innymi cząsteczkami, tak zwany glikokaliks, komórkom bardziej złożonym organizmów nadaje tożsamość antygenową, co warunkuje m.in. występowanie różnych grup krwi[11].

W niektórych komórkach zwierzęcych, jak miocyty i neurony zmiany potencjału elektrycznego błony pozwalają na przewodzenie impulsów nerwowych w odpowiedzi na bodźce, co jest podstawą działania układów nerwowego i mięśniowego..

U części protistów (np. Amoeba spp.), jak i niektórych komórek zwierzęcych (jak np. amebocyty gąbek, czy ssacze neutrofile i monocyty) przelewanie cytoplazmy powodujące uwypuklanie błony umożliwia przemieszczanie się tych komórek. Nazywane jest to ruchem pełzakowatym (ameboidalnym). Ruch ten jest możliwy dzięki występowaniu w komórkach cytoszkieletu.

Występowanie wici i rzęsek na powierzchni komórek także umożliwia ruch w środowisku wodnym. Wici występują zwykle pojedynczo i są znacznie dłuższe od rzęsek występujących bardzo licznie wokół całej komórki. Obie struktury zbudowane są podobnie, z mikrotubul. W "trzonku" mikrotubule tworzą dublety, dziewięć ułożonych okrężnie i jeden w centrum. Tworzy to tzw. strukturę 9+2. U podstawy rzęsek i wici znajduje się kinetosom (homologiczny do centrioli) zbudowany z 9 ułożonych okrężnie trypletów mikrotubul (struktura 9x3).

Zasada działania wici polega na uderzaniu w wodę i wywoływaniu fali, która powoduje przemieszczenie komórki. Rzęski natomiast pracują w podobny sposób jak wiosła.

Rzęski u bardziej złożonych zwierząt mogą pełnić także inne funkcje, np. u ssaków oczyszczają powietrze w jamie nosowej zatrzymując pyły na swojej powierzchni.

Siateczka śródplazmatyczna i aparat Golgiego

Wewnątrz błony komórkowej znajdują się organella oraz cytozol (cytoplazma). Cytoplazma, podobnie jak u Procaryota, jest białkowym koloidem. Charakter koloidalny pozwala na utrzymywanie w cytoplazmie organelli ponad spodnią powierzchnią błony komórkowej, tak jakby organella były zawieszone w komórce.

Retikulum endoplazmatyczne (siateczka śródplazmatyczna, ER) i błony organelli wyznaczają wewnątrz komórki oddzielone od siebie przestrzenie (kompartmenty), dzięki czemu możliwe jest wytworzenie i utrzymywanie różnych warunków w różnych przestrzeniach tej samej komórki, a co za tym idzie – przeprowadzania w jednym czasie wielu procesów wymagających odmiennych warunków reakcji.

Pod względem budowy, błony te są podobne do plazmolemmy. Najważniejsze różnice dotyczą tego, że są one cieńsze, zawierają więcej białek, a znacznie mniej cholesterolu oraz nie zawierają glikokaliksu.

Samo retikulum endoplazmatyczne jest zróżnicowane – wyróżnia się dwie jego formy: jedną zawierającą ziarnistości (siateczka śródplazmatyczna szorstka) i drugą ich pozbawioną (siateczka śródplazmatyczna gładka). ER gładkie występuje w postaci kanalików, zaś szorstkie w postaci cystern. Stosunek ilościowy między ER szorstkim, a gładkim jest zmienny i zależy od stanu czynnościowego komórki.

ER gładkie jest miejscem biosyntezy lipidów, przemian sterydów, gromadzenia jonów wapniowych Ca2+[12] oraz detoksykacji trucizn, leków, itd.[13] Od błon siateczki śródplazmatycznej gładkiej mogą oddzielać się pęcherzyki, które przekształcają się w wakuole i mikrociała. Retikulum zapewnia transport substancji pokarmowych w cytoplazmie oraz wytwarza lizosomy, które biorą udział w rozkładzie produktów pokarmowych przenikających do komórek. U roślin utrzymuje ponadto kontakt pomiędzy sąsiednimi komórkami.

Na zewnętrznej powierzchni siateczki śródplazmatycznej szorstkiej występują rybosomy (widoczne w mikroskopie jako ziarnistości). Są one, podobnie jak u bezjądrowych, zbudowane z dwóch podjednostek, mają taki sam skład chemiczny (rRNA i białka zasadowe) oraz pełnią taką samą funkcję (są miejscem biosyntezy białek), niemniej różnią się od nich wielkością. U Eucaryota współczynnik sedymentacji całego rybosomu (znajdującego się na ER) wynosi 80S, jego małej podjednostki 40S, dużej – 60S.

W cytoplazmie znajdują się także rybosomy wolne - nie związane z błonami. Z grubsza można przyjąć, że rybosomy z siateczki śródplazmatycznej produkują polipeptydy wydzielane na zewnątrz lub wbudowywane w błonę komórkową, zaś rybosomy wolne syntezują białka nieopuszczające komórki.

Rybosomy w komórkach jądrowców występuję także w mitochondriach i plastydach. Mają one jednak współczynnik sedymentacji typowy dla Procaryota, co być może świadczy o słuszności teorii endosymbiozy.

Rozpoczęcie biosyntezy białek wymaga, podobnie jak u Procaryota, przyłączenia dużej jednostki rybosomu do małej, tworzącej wraz z mRNA i tRNAMet kompleks inicjujący, z tą różnicą że inicjatorowy tRNAMet zawiera niezmodyfikowaną metioninę.

Inną, poza retikulum endoplazmatycznym, błoniastą strukturą komórki jest zlokalizowany najczęściej w pobliżu jądra aparat (układ) Golgiego. Jest on zbudowany z grup spłaszczonych cystern wraz z odpączkowującymi od nich pęcherzykami (co stanowi tzw. diktiosomy) i odpowiada głównie za modyfikację białek i procesy ich segregacji, transportu do innych organelli lub wydzielania na zewnątrz. Powierzchnię odpowiedzialną za syntezę nazywa się mianem cis, zaś tę odpowiadającą za dojrzewanie i sortowanie – trans.

Mitochondria

 Osobny artykuł: Mitochondria.

Schemat budowy mitochondrium

Mitochondria, organella odpowiedzialne za oddychanie komórkowe, zbudowane są z dwóch błon, zewnętrznej i wewnętrznej. Błona wewnętrzna jest silnie pofałdowana (wyróżnia się wpuklone części błony, tzw. grzebienie mitochondrialne), dzięki czemu zwiększona jest powierzchnia reakcji biochemicznych (zwłaszcza procesu utleniania końcowego, zwanego także nieformalnie łańcuchem oddechowym). Przestrzeń międzybłonową, często bardzo wąską, wypełnia cytoplazma, zwana tutaj macierzą mitochondrialną (matrix mitochondrialnym), w której także zachodzą reakcje oddychania komórkowego: reakcja pomostowa oraz cykl Krebsa (kwasów trikarboksylowych).

W macierzy mitochondrialnej znajdują się rybosomy (70S) oraz mtDNA, czyli DNA niezależny od jądrowego. Pozwala to na przyrost liczby mitochondriów w wyniku namnażania zbliżonego do podziałów u wolno żyjących Procaryota.

Mitochondria mają kształt kulisty lub wydłużony. W komórkach występują licznie, często jest ich kilkaset tysięcy sztuk. U kręgowców, liczność mitochondriów jak i grzebieni mitochondrialnych regulowana jest hormonalnie poprzez hormony tarczycy: tyroksynę i trijodotyroninę.

Plastydy

W komórkach roślinnych znajdują się także niewystępujące u zwierząt plastydy. Jedne z nich, zwane chloroplastami, są miejscem w którym zachodzi reakcja fotosyntezy polegająca na wytworzeniu cukrów ze związków nieorganicznych, z wykorzystaniem energii świetlnej.

Chloroplasty (ciałka zieleni) są otoczone dwiema błonami o różnej przepuszczalności, które otaczają stromę wypełniającą wnętrze chloroplastu. Błona zewnętrzna dobrze przepuszcza jony. Wewnętrzna błona jest natomiast słabo przepuszczalna i tworzy liczne woreczki (zwane tylakoidami), które ułożone jeden na drugim budują struktury zwane granami. W granach znajduje się chlorofil, aktywny barwnik, biorący udział w zależnej od światła fazie fotosyntezy[14].

Wnętrze chloroplastu wypełnia stroma. W jej skład wchodzą m.in. niewielkie ilości DNA, enzymy biorące udział w fotosyntezie oraz rybosomy (70S), które biorą udział w produkcji białek. Stroma tylakoidów jest miejscem, gdzie zachodzą reakcje produkcji glukozy (cykl M. Calvina, nazywany czasem fazą światłoniezależną[15]).

Rozmiary chloroplastów są dość zróżnicowane, najczęściej jest tak że rośliny bardziej zaawansowana ewolucyjnie posiadają mniejsze chloroplasty. U roślin pasożytujących chloroplasty mogą nie występować w ogóle.

Podobnie jak mitochondria, chloroplasty mają zdolność samoreplikacji. Fakt ten jest uznawany za argument popierający teorię, że chloroplasty powstały w wyniku endosymbiozy sinic.

Jądro komórkowe

Schemat budowy jądra komórkowego

Postacie cysty (po lewej) i trofozoitu (po prawej) wiciowca G. lamblia zawierają więcej niż jedno jądro, cysta – 4, zaś trofozoit – 2. Widoczne są one na schemacie jako owalne struktury z ciemniejszymi owalami wewnątrz (jąderkami).

Jądro komórkowe gromadzi większość DNA komórki. Występuje zazwyczaj pojedynczo, choć znane są komórki pozbawione jądra, jak i komórki zawierające ich po kilka[16], jak np. komórki bielma, mięśnia sercowego, czy komórki niektórych jednokomórkowców (np. Giardia lamblia).

Jądro otoczone jest przez podwójną błonę (otoczkę) jądrową. Wewnątrz niej znajduje się chromatyna, jąderko oraz macierz zwana kariolimfą lub nukleoplazmą.

Otoczka jądrowa zbudowana jest z dwóch błon. Nie jest ona strukturą ciągłą - przerwy w otoczce zwane porami jądrowymi, umożliwiają m.in. transport syntezowanego w jądrze mRNA (matrycy w biosyntezie białek) do cytoplazmy, gdzie na rybosomach biosynteza ta ma miejsce. Transport ten regulują białka zlokalizowane na obrzeżach prześwitu poru, tworzące tak zwany kompleks porowy.

Błona zewnętrzna ponadto połączona jest z ER szorstkim i także na jej powierzchni zaobserwować można rybosomy.

Wewnątrz jądra komórkowego, w kariolimfie, znajduje się chromatyna i to ona stanowi główny magazyn informacji genetycznej. Zbudowana jest ona z nici DNA nawiniętych na oktamer histonowy[17] przy współudziale zespołu białek niehistonowych, co umożliwia efektywne "upakowanie" DNA w jądrze. W czasie podziałów komórkowych chromatyna ulega kondensacji w chromosomy.

Wyróżnia się chromatynę luźną – euchromatynę, która ulega transkrypcji (czyli jest genetycznie aktywna) oraz skondensowaną heterochromatynę, genetycznie nieaktywną. Skupiska heterochromatyny obserwuje się przy otoczce jądrowej, w regionach nie ulegających transkrypcji oraz wokół jąderka.

Jąderko jest kulistą, często pojedynczą, strukturą wewnątrz jądra komórkowego nie otoczoną żadną błoną. Pod względem chemicznym zbudowane jest głównie z białek i, w mniejszym stopniu, z RNA i DNA. Odpowiada za wytwarzania rRNA oraz składanie rybosomów.

Jąderko po podziale powstaje poprzez kondensację części chromosomu (lub kilku chromosomów) zwanych obszarami jąderkotwórczymi (NOR-ami, z ang. nucleolar organizers). U człowieka są to krótsze ramiona chromosomów par 13, 14, 15, 21 i 22.

Centriole

W cytoplazmie komórki zwierzęcej, w pobliżu jądra komórkowego zlokalizowane są dwie centriole[18] – większa centriola matczyna i mniejsza centriola potomna – biorące udział w powstawaniu wrzeciona kariokinetycznego i tym samym w rozdziale materiału genetycznego w telofazie mitozy i mejozy. Centriole powstają w wyniku samoreplikacji w tym samym czasie, kiedy namnażane jest DNA (tzn. w fazie S).

Wodniczki

W komórkach, zwłaszcza roślinnych, występują wakuole[19] pełniące funkcję magazynu wielu substancji, zarówno organicznych (aminokwasy, białka, cukry, alkaloidy[20], itd.), jak i nieorganicznych (głównie wody). Utrzymują turgor komórki oraz mogą pełnić wiele innych funkcji, zależnie od ich składu. Biorą na przykład udział w regulacji pH cytoplazmy poprzez aktywny transport jonów H+ poprzez błonę wodniczki (tonoplast), a tym samym "włączają" i "wyłączają" szlaki metaboliczne, w których biorą udział enzymy wymagające określonego pH.

U drobnych organizmów zwierzętopodobnych (pierwotniaków) często występują wakuole wyspecjalizowane do regulacji osmotycznej (wodniczka tętniąca) oraz trawienia wchłoniętego pokarmu (wodniczka pokarmowa).

Wakuole powstają najczęściej z pęcherzyków aparatu Golgiego.

Połączenia między komórkami

Tworzenie połączeń między komórkami może mieć charakter stały lub chwilowy. Ten pierwszy występuje najczęściej u organizmów tkankowych, drugi zaś u prokariontów i protistów[21].

U Eucaryota połączenia komórek umożliwiają utrzymanie zwartości tkanki oraz komunikację międzykomórkową.

Komórki roślinne łączą się ze sobą głównie za pomocą plazmodesm, czyli kanału przechodzącego przez jamki ściany komórkowej, po środku którego przebiega zmodyfikowane pasmo siateczki śródplazmatycznej (desmotubula), przez które mogą przenikać między komórkami substancje o stosunkowo niedużej masie cząsteczkowej[22].

U zwierząt zaś, sposoby takich połączeń są różne. Największe znaczenie mają połączenia zamykające i zwierające. Te drugie występują powszechnie w tkankach narażonych na urazy mechaniczne, takich jak mięsień sercowy, czy nabłonek pochwy; te pierwsze w pozostałych.

Miejsca połączenia komórek, tzw. desmosomy, zbudowane są z wystających do przestrzeni międzykomórkowej włókien białkowych oraz płytek adhezyjnych[23] zlokalizowanych we wnętrzu komórki, w pobliżu jej błony. W płytkach adhezyjnych zagnieżdżone są natomiast filamenty pośrednie, które stabilizują całość. Samo złączenie się desmosomu jednej komórki z desmosomem drugiej jest oparte na zasadzie zamka błyskawicznego (tzn. wielu białkowych "zatrzasków"). Oprócz tego można wyróżnić tzw. hemidesmosomy znajdujące się na powierzchni komórek nabłonka i łącząc je z blaszką podstawną.

Połączenie typu nexus umożliwiają wymianę metaboliczną między komórkami. W wymianie tej biorą udział substancje rozpuszczalne w wodzie o niewielkiej masie cząsteczkowej oraz jony nieorganiczne przy współudziale białka koneksyny. Połączenia tego typu występują m.in. w tkance nerwowej, czy nabłonkowej. Regulacja transportu związków przez połączenie typu nexus jest możliwa dzięki zmianom konformacyjnym białek strukturalnych wchodzących w skład tego kompleksu. Białka te w zależności od przyjętej konformacji mogą otwierać bądź zwierać kanały transportowe. Pojedynczy kanał transportowy składa się z sześciu cząsteczek koneksyny tworzących kanał transbłonowy i określany jest mianem koneksonu.

Transport międzykomórkowy odbywa się także na zasadzie przenikania cząstek z jednej komórki do przestrzeni międzykomórkowej, skąd są one pobierane przez komórki sąsiednie. Podobnie jak u roślin, substancje te mogą regulować procesy zachodzące w pewnym obszarze – dzieje się tak w przypadku hormonów miejscowych (takich jak gastryna).


Wyszukiwarka

Podobne podstrony:
Budowa komorki eukariotycznej czesc VI mitochondrium i jadro komorkowe
Biologia część I, Budowa komórki Eukariotycznej i funkcje jej organelli
Budowa komórki bakteryjnej
Budowa komórki eukariotycznej
Budowa Komórki, Botanika, Botanika(2)
BUDOWA KOMÓRKI I JEJ WŁAŚCIWOŚCI
biol.medyczna, wykład - Ogólna budowa komórki, Ogólna budowa komórki
komórka, Budowa komórki
budowa komórki i przemiana materii
lab 2 Budowa komorki prokariotycznej Barwienie proste
BUDOWA KOMÓRKI I JEJ WŁAŚCIWOŚCI
budowa komorki bakteryjnej i jej wplyw na zakaznosc i chorobotworczosc uzupelnione z wykladow
Biologia część I Budowa komórki prokariotycznej
Budowa komórki eukariotycznej część II
Budowa Komórki Eukariotycznej cz I
Biologia część I, Budowa komórki prokariotycznej
27. Budowa komórki roślinnej. Organelle komó rkowe i ich funkcje, licencjat eksperyment
Budowa komórki, Ratownicto Medyczne, Biologia
Biologia część I Budowa komórki Eukariotycznej i funkcje jej organelli
biologia, Budowa komórki i funkcje jej składników

więcej podobnych podstron