magnesium amalgam eros rm002

background image

MAGNESIUM AMALGAM

1

Magnesium Amalgam

Mg(Hg)

[37237-15-3]
InChI = 1/Mg
InChIKey = FYYHWMGAXLPEAU-UHFFFAOYAI

(reduction of metal halides, particularly for the synthesis of
organometallic compounds; preparation of a reduced titanium
species from TiCl

4

that is useful for the reductive dimerization of

ketones, aldehydes, their derived imines, and the chemoselective
reduction of nitro groups; preparation of bis(bromomagnesio)-
methanes; reductive dimerization of germane derivatives; deoxy-

genation of epoxides)

Preparative Methods:

prepared fresh, or generated in situ, from

Magnesium metal and typically 1–3 mol % of a mercury(II) salt
such as Mercury(II) Chloride in THF or aromatic hydrocarbon
solvent.

Handling, Storage, and Precautions:

mercury salts are toxic.

Proper disposal is required.

Reductions and Reductive Dimerizations. Mg(Hg) is the

classical reagent for the reductive dimerization of acetone to form
pinacol,

1

and still finds occasional use in that regard.

2,3

More re-

cently, the pinacol coupling has been effected by the combination
of Titanium(IV) Chloride and 2 equiv of Mg(Hg).

4

For exam-

ple, using the latter mixture, cyclohexanone is dimerized in 93%
yield (eq 1). The intramolecular dimerization can be facile, as il-
lustrated by the reductive cyclization of 2,5-hexanedione to the
cis

-cyclobutanediol (eq 2), and the intramolecular ketoaldehyde

cross coupling illustrated in eq 3. Other reagents for pinacol-type
coupling of carbonyl derivatives include a variety of reduced tita-
nium reagents,

5

7

Samarium(II) Iodide,

8

Niobium Trichloride,

9

and Aluminum Chloride–Zinc–Acetic Acid.

10

O

HO OH

(1)

THF, 0 °C, 0.5 h

93%

Mg(Hg)–TiCl

4

O

O

Me

Me

OH

OH

(2)

THF, 0 °C, 2.5 h

81%

Mg(Hg)–TiCl

4

H

O

CHO

H

OH

OH

(3)

THF, 0 °C, 1.5 h

90%

Mg(Hg)–TiCl

4

The Mg(Hg)–TiCl

4

mixture is also an effective reagent

for the stereoselective reductive dimerization of aldimines to
1,2-diamines.

11,12

For example (eq 4), treatment of the aldimine

derived from benzaldehyde leads to a 80:20 mixture of syn (±)
and anti (meso) isomers in 63% yield. Simple reduction of the

aldimine competes with the dimerization. Similarly, the N-ben-
zylimine derived from acetaldehyde affords a 90:10 syn:anti
mixture in 67% yield. Other reagents for the reductive dimer-
ization of imines include TiCl

4

–Mg,

13

. SmI

2

,

14,15

Niobium(IV)

Chloride,

16

Indium,

17

Ytterbium(0),

18

and Zinc.

19

(4)

N

H

R

1

R

1

R

2

R

1

NHR

2

NHR

2

NHR

2

NHR

2

R

1

R

1

+

syn

(±)

anti

(meso)

(a) R = Ph, R

2

= Me (63%)

(b) R

1

= Me, R

2

= CH

2

Ph (67%)

THF, 0 °C, 12 h

Mg(Hg)–TiCl

4

Rivière and Satge

20

reported the Mg(Hg)-mediated reductive

dimerizations of organogermanes. For example (eq 5), treatment
of phenylchlorogermane with Mg(Hg) (THF, 20

C) affords the

diphenyl-1,2-digermane in 75% yield. Similarly, diphenylchloro-
germane affords tetraphenyl-1,1,2,2-digermane in 73% yield.

R Ge

H

Ph

Cl

R

H

Ph

R

Ge

H

Ph

Ge

(5)

R = H (75%), Ph (73%)

THF, 20–60 °C

Mg(Hg)

The Mg(Hg)–TiCl

4

mixture is an effective reagent for the

chemoselective reduction of the nitro group.

21

For example

(eq 6), chloro-, cyano-, and carboxy-substituted nitro aromat-
ics are each reduced in high yield by the Mg(Hg)–TiCl

4

mix-

ture (THF–t-butanol, 0

C, 1 h). Aliphatic nitro compounds

are also efficiently reduced. Others have used this procedure
successfully.

22

24

Other reagents for this transformation include

Titanium(III) Chloride,

25

TiCl

4

–Te(i-Bu)

2

,

26

TiCl

4

Sodium

Borohydride,

27

Palladium on Carbon–Ammonium Formate,

28

Raney NickelHydrazine,

29

Chromium(II) Chloride,

30

Tin(II)

Chloride,

31

and Nickel Boride (Ni

2

B).

32

O

2

N

R

H

2

N

R

(6)

R = Cl (92%), CN (94%), C(O)OCH

2

CH=CH

2

(96%)

THF, 0 °C, 12 h

Mg(Hg)–TiCl

4

Mg(Hg) has been used occasionally for the reduction of

1,2-dihalides

33

and enones,

34

and has been extensively used for

the preparation of reduced organometallic complexes.

35

40

Preparation of 1,1-Diorganometallic Reagents. Mg(Hg) has

been widely used for the preparation of 1,1-dimagnesium
reagents

41

by reaction with methylene dibromides and diiodides.

For example (eq 7), Cainelli and co-workers

42

found that

treatment of Dibromomethane or Diiodomethane with Mg(Hg)
affords a solution of organomagnesium reagent. Bis(bromo-
magnesio)methane reacts with CO

2

to afford the malonic acid

and with aldehydes and ketones to give alkenes. This reagent
has found use in organic synthesis

43

47

and offers an alternative

to Methylenetriphenylphosphorane, Trimethylsilylmethyllith-
ium
, Trimethylsilylmethylmagnesium Chloride, the Tebbe
reagent(µ-Chlorobis(cyclopentadienyl)(dimethylaluminum)-µ-
methylenetitanium
), dimethyltitanocene (Bis(cyclopentadienyl)
dimethyltitanium
),

48

CH

2

I

2

–CrCl

2

,

49

CH

2

I

2

–Zn–Me

3

Al,

50

CH

2

I

2

–Zn–TiCl

4

,

51,52

and CH

2

(AlR

2

)

2

,

53

reagents. Similarly,

Mg(Hg) has been used for the preparation of the 1,1-dimagnesium

Avoid Skin Contact with All Reagents

background image

2

MAGNESIUM AMALGAM

species bis(bromomagnesio)trimethylsilylmethane

54

and bis

(bromomagnesio)bis(trimethylsilyl)methane.

55

(7)

R

1

C(O)R

2

R

1

= C

11

H

23

, R

2

=H (65%)

R

1

= Ph, R

2

= H (70%)

R

1

, R

2

= -(CH

2

)

5

- (68%)

X

MgX

MgX

R

1

X

R

2

Mg(Hg)

X = Br, I

Bickelhaupt and co-workers

56

reported the use of bis(bro-

momagnesio)methane as a reagent for the preparation of 1,3-
dimetallacyclobutanes. For example (eq 8), treatment of bis-
(bromomagnesio)methane (prepared using Mg(Hg) as described
above) with Cp

2

TiCl

2

and Dichlorodimethylsilane affords the

novel mixed 1,3-dimetallacyclobutane in quantitative yield.

(8)

Cp

2

TiCl

2

Cp

2

Ti

CH

2

MgBr

CH

2

MgBr

Cp

2

Ti

SiMe

2

MgBr

MgBr

Me

2

SiCl

2

quantitative

Miscellaneous. Mg(Hg) has been used in combination with

Magnesium Bromide as a reagent for the deoxygenation of
epoxides.

57

Yields are typically modest, for example 50% for the

formation of cyclohexene from cyclohexene oxide, and several
good alternative reagents are available for this transformation.

58

1.

Adams, R.; Adams, E. W., Org. Synth. 1941, 1, 459.

2.

Binks, J.; Lloyd, D., J. Chem. Soc. (C) 1971, 2641.

3.

Nichols, P. P., J. Org. Chem. 1979, 44, 2126.

4.

Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S., J. Org. Chem. 1976,
41

, 260.

5.

Lenior, D., Synthesis 1989, 883.

6.

McMurry, J., Chem. Rev. 1989, 89, 1513.

7.

Pons, J.-M.; Santelli, M., Tetrahedron 1988, 44, 4295.

8.

Chiara, J. L.; Cabri, W.; Hanessian, S., Tetrahedron Lett. 1991, 32, 1125.

9.

Szymoniak, J.; Bescancon, J.; Moise, C., Tetrahedron 1992, 48, 3867.

10.

Jun, J.-G.; Shin, H. S., Synth. Commun. 1993, 23, 1871.

11.

Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J.,
Synthesis 1988

, 255.

12.

Cuvinot, D.; Mangeney, P.; Alexakis, A.; Normant, J.-F., J. Org. Chem.
1989, 54, 2420.

13.

Betschart, C.; Schmidt, B.; Seebach, D., Helv. Chim. Acta 1988, 71,
1999.

14.

Enholm, E.; Forbes, D. C.; Holub, D. P., Synth. Commun. 1990, 20, 981.

15.

Imamoto, T.; Nishimura, S., Chem. Lett. 1990, 1141.

16.

Roskamp, E. J.; Pederson, S. F., J. Am. Chem. Soc. 1987, 109, 3152.

17.

Kalyanam, N.; Rao, G. V., Tetrahedron Lett. 1993, 34, 1647.

18.

Takai, K.; Tsubaki, Y.; Tanaka, S.; Beppu, F.; Fujiwara, Y., Chem. Lett.
1990, 203.

19.

Shono, T.; Kise, N.; Oike, H.; Yoshimoto, M.; Okazaki, E., Tetrahedron
Lett.
1992

, 33, 5559.

20.

Rivière, P.; Satge, J., Synth. Inorg. Metal-Org. Chem. 1972, 2, 57.

21.

George, J.; Chandrasekaran, S., Synth. Commun. 1983, 13, 495.

22.

Dijkstra, P. J.; Van Steen, B. J.; Reinhoudt, D. N., J. Org. Chem. 1986,
51

, 5127.

23.

Sanchez, I. H.; Larraza, M. I.; Rojas, I.; Brena, F. K.; Flores, H. J.;
Jankowski, K., Heterocycles 1985, 23, 3033.

24.

Pakusch, J.; Ruechardt, C., Chem. Ber. 1990, 123, 2147.

25.

Ho, T.-L.; Wong, C. M., Synthesis 1974, 45.

26.

Suzuki, H.; Manabe, H.; Enokiya, R.; Hanazaki, Y., Chem. Lett. 1986,
1339.

27.

Kano, S.; Tanaka, Y.; Sugino, E.; Hibino, S., Synthesis 1980, 695.

28.

Ram, S.; Ehrenkaufer, R. E., Tetrahedron Lett. 1984, 25, 3415.

29.

Yuste, F.; Saldana, M.; Walls, F., Tetrahedron Lett. 1982, 23, 147.

30.

Varma, R. S.; Varma, M.; Kabalka, G. W., Tetrahedron Lett. 1985, 26,
3777.

31.

Bellamy, F. D.; Ou, K., Tetrahedron Lett. 1984, 25, 839.

32.

Ganem, B.; Osby, J. O., Chem. Rev. 1986, 86, 763.

33.

Wiberg, K. B.; Ubersax, R. W., J. Org. Chem. 1972, 37, 3827.

34.

Celina, M.; Lazana, R. L. R.; Luisa, M.; Franco, T. M. B.; Herold, B. J.,
J. Chem. Soc., Faraday Trans. 1993

, 1327.

35.

McVicker, G. B., Inorg. Synth 1976, 16, 56.

36.

McVicker, G. B., Inorg. Chem. 1975, 14, 2087.

37.

Green, M. L. H.; Wong, L. L., J. Chem. Soc., Chem. Commun. 1989,
571.

38.

Hill, A. F.; Honig, H. D.; Stone, F. G. A., J. Chem. Soc., Dalton Trans.
1988, 3031.

39.

Morancais, J. L.; Hubert-Pfalzgraf, L. G., Transition Met. Chem. 1984,
9

, 130.

40.

Jones, R. F.; Fisher, J. R.; Cole-Hamilton, D. J., J. Chem. Soc., Dalton
Trans.
1981

, 2550.

41.

Bickelhaupt, F., Angew. Chem., Int. Ed. Engl. 1987, 26, 990.

42.

Bertini, F.; Grasselli, P.; Zubiani, G.; Cainelli, G., Tetrahedron 1970, 26,
1281.

43.

Georges, M.; MacKay, D.; Fraser-Reid, B., J. Am. Chem. Soc. 1982, 104,
1101.

44.

Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S., J. Org. Chem. 1981, 46,
2439.

45.

Gewali, M. B.; Ronald, R. C., J. Org. Chem. 1982, 47, 2792.

46.

Welch, S. C.; Rao, A. S. C. P.; Gibbs, C. G.; Wong, R. Y., J. Org. Chem.
1980, 45, 4077.

47.

Yoshimura, J.; Sato, K.; Wakai, H.; Funabashi, M., Bull. Chem. Soc. Jpn.
1976, 49, 1169.

48.

Petasis, N. A.; Bzowej, E. I., J. Am. Chem. Soc. 1990, 112, 6392.

49.

Okazoe, T.; Takai, K.; Utimoto, K., J. Am. Chem. Soc. 1987, 109, 951.

50.

Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H., Bull. Chem. Soc. Jpn. 1980,
53

, 1698.

51.

Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H., Tetrahedron Lett. 1985,
26

, 5581.

52.

Lombardo, L., Tetrahedron Lett. 1982, 23, 4293.

53.

Piotrowski, A. M.; Malpass, D. B.; Boleslawski, M. P.; Eisch, J. J., J.
Org. Chem.
1988

, 53, 2829.

54.

Van de Heisteeg, B. J. J.; Schat, G.; Tinga, M. A. G. M.; Akkerman, O.
S.; Bickelhaupt, F., Tetrahedron Lett. 1986, 27, 6123.

55.

Hogenbirk, M.; Van Eikema Hommes, N. J. R.; Schat, G.; Akkerman, O.
S.; Bickelhaupt, F.; Klumpp, G. W., Tetrahedron Lett. 1989, 30, 6195.

56.

Van de Heisteeg, B. J. J.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F., J.
Organomet. Chem.
1986

, 308, 1.

57.

Bertini, F.; Grasselli, P.; Zubiani, G.; Cainelli, G., J. Chem. Soc., Dalton
Trans.
1970

, 3, 144.

58.

Wong, H. N. C.; Fok, C. C. M.; Wong, T., Heterocycles 1987, 26, 1345.

James M. Takacs

University of Nebraska-Lincoln, Lincoln, NE, USA

A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
zinc amalgam eros rz003
aluminium amalgam eros ra076
magnesium eros rm001
magnesium eros rm001
benzyl chloride eros rb050
hydrobromic acid eros rh031
chloroform eros rc105
Ćw?azy opracowywania ubytków klasy I wg Blacka ?menty podkładowe Amalgamat srebra
oxalyl chloride eros ro015
Magnesii carbonas
potassium permanganate eros rp244
68 979 990 Increasing of Lifetime of Aluminium and Magnesium Pressure Die Casting Moulds by Arc Ion
peracetic acid eros rp034
p toluenesulfonic acid eros rt134
Badanie układu napędowego z silnikiem bezszczotkowym z magnesami trwałymi

więcej podobnych podstron