HYDROBROMIC ACID
1
Hydrobromic Acid
1
BrH
[10035-10-6]
BrH
(MW 80.91)
InChI = 1/BrH/h1H
InChIKey = CPELXLSAUQHCOX-UHFFFAOYAZ
(preparation of alkyl and vinyl bromides; preparation of phenols
from alkyl aryl ethers; in combination with hydrogen peroxide is
an in situ source of bromine for the preparation of alkyl and aryl
bromides)
Physical Data:
aqueous solution forms a constant boiling
azeotrope containing ca. 48% HBr at 760 mmHg; d = 1.49
g cm
−3
. Anhydrous gas, d 2.71 g L
−1
; mp −86.9
◦
C; bp
−66.8
◦
C.
Solubility:
very sol water and protic solvents.
Form Supplied in:
as anhydrous gas in cylinders; as aqueous so-
lutions of various concentrations; widely available in all forms.
Analysis of Reagent Purity:
titration.
Handling, Storage, and Precautions:
hydrogen bromide is a cor-
rosive, colorless, nonflammable gas which forms a white cloud
when exposed to air; as concentrated solutions, hydrobromic
acid is a colorless to light yellow corrosive liquid which fumes
when exposed to air; the acid can cause severe skin burns, dam-
age to the respiratory and digestive tract, and/or visual damage;
repeated exposure may cause dermatitis and photosensitization;
the gas and solutions of hydrobromic acid should be handled
with adequate ventilation and proper skin and eye protection.
Use in a fume hood.
Acid Catalysis. Hydrogen Bromide is completely ionized in
all but the most concentrated aqueous solutions, making it a strong
Lewis acid. However, the expense of hydrobromic acid relative to
Hydrochloric Acid and other mineral acids, as well as the greater
nucleophilicity of bromide, has limited its use as an acid catalyst.
Bromomethylation. Concentrated hydrobromic acid or an-
hydrous hydrogen bromide have been used with Paraformalde-
hyde or 1,3,5-trioxane for the bromomethylation of aromatic com-
pounds (eq 1). Formation of bis(bromomethyl) ether, a carcino-
genic compound, under the reaction conditions is problematic.
This side reaction has limited the use of the bromomethylation
process. Phenols are so reactive under the reaction conditions
that they are frequently deactivated through preparation of their
acyl derivatives prior to bromomethylation. The reaction may be
run in the presence of Brønsted acid catalysts.
2
Treatment of
dibenzyl diselenide with Zinc and hydrobromic acid followed by
paraformaldehyde and hydrogen bromide produced high yields of
bromomethyl benzyl selenide (eq 2).
3
Analogous chemistry is ob-
served with benzyl sulfide (eq 3). Treatment of an aryl alkyl ketone
with Bis(dimethylamino)methane and hydrogen bromide has pro-
duced moderate yields of the ketone, which was bromomethylated
α
to the carbonyl (eq 4).
4
ArH
+
CH
2
O
+
HBr
(1)
ArCH
2
Br
RSeSeR
+
CH
2
O
+
HBr
(2)
RSeCH
2
Br
RSH
+
CH
2
O
+
HBr
(3)
RSCH
2
Br
O
Me
N
N
Me
Me
Me
Br
O
+
(4)
+
HBr
Addition to Single Bonds in Three-membered Rings. Hy-
drogen bromide is less commonly used for the preparation of
derivatives of terpenes containing three-membered rings than hy-
drochloric acid. Cleavage of cyclopropanes produces addition
products which are expected to arise from bromide addition to
the most stable carbonium ion (analogous to Markovnikov addi-
tion), some rearrangements do occur, and steric factors do play a
role in the reaction (eq 5). Simple alkyl derivatives of the parent
cyclopropane can give polymeric materials as the main product.
As an example, treatment of cis-carane with hydrogen bromide
results in cleavage of the cyclopropane ring with isolation of the
tertiary bromide.
5
(5)
Br
+
HBr
Cyclopropylcarbinols react with concentrated hydrobromic
acid under mild conditions to yield 1-bromo-3-butenes (eq 6).
6
The reaction is regiospecific with secondary and some tertiary
alcohols. With alkynic cyclopropylcarbinols, stereospecificity of
the product double bond can be controlled through the use of
Octacarbonyldicobalt.
7
Br
OH
(6)
In acetic acid, acyl cyclopropane derivatives add anhydrous hy-
drogen bromide to yield 4-bromobutanone derivatives (eq 7). This
addition is stereo- as well as regioselective.
8
Br
O
R
O
R
(7)
Oxiranes react readily with hydrobromic acid to yield addition
products (eq 8). The reaction proceeds with inversion at carbon.
The expected product is that in which the bromide adds to the least-
hindered carbon. Addition to epoxycyclohexanes gives products
in which attack of bromide is axial.
9
Analogous chemistry is ob-
served with aziridines (eq 9).
10
Br
OH
O
+
HBr
(8)
Br
NH
2
H
N
(9)
+
HBr
Addition to Single Bonds in Four-, Five-, and Six-membered
Rings. Although the parent acylcyclobutanes are stable to hydro-
gen bromide, [3.2.2]propellanes, [4.2.2]propellanes, and cubanes
Avoid Skin Contact with All Reagents
2
HYDROBROMIC ACID
react to give addition products (eqs 10 and 11) or rearrangement
products (eq 12), as shown.
11
(10)
O
O
Br
OH
O
O
HO
OH
O
O
HO
H
H
Br
H Br
H
(11)
(12)
O
HO
Br
Oxetanes (eq 13) and tetrahydrofurans (eq 14) can be opened
by anhydrous hydrogen bromide under a variety of conditions.
12
O
Br
OH
(13)
Br
O
OH
(14)
Four-, five-, and six-membered lactones add anhydrous hydro-
gen bromide to yield the acyclic bromide (eq 15). When run in
glacial acetic acid, the free carboxylic acid is isolated; in alcohols,
the ester is produced.
13
O
(CH
2
)
n
O
RO
(CH
2
)
n
O
Br
(15)
n
= 1, 2, 3
Reaction with Ethers. Ethers react with hydrogen bromide
under a variety of conditions to yield the corresponding bromide
and alcohol (eq 16). Acetic acid is often used as solvent, but other
carboxylic acids have also been used. Frequently, under the re-
action conditions, the alcohol is also converted to its bromide.
14
Reports of explosive reactions of ethers and hydrogen bromide
have been reviewed.
15
(16)
R
2
OR
1
+
HBr
R
2
OH
+
R
2
Br
+
R
1
OH
+
R
1
Br
Aryl methyl ethers can be cleaved to phenols with hydrogen
bromide in glacial acetic acid or by concentrated hydrobromic
acid.
16
This transformation is commonly accomplished using
boron trihalides, Pyridinium Chloride, or Iodotrimethylsilane.
17
Addition to Carbon–Carbon Multiple Bonds.
Hydrogen
bromide reacts with alkenes more rapidly than hydrogen chlo-
ride. When care is taken to avoid radical conditions, the products
which are obtained are those expected from Markovnikov addi-
tion (eq 17). Iron(III) Chloride, iron(III) bromide, or Aluminum
Bromide are the most commonly used Lewis acids to activate
unreactive double bonds. Hydrobromination of double bonds un-
der radical conditions can lead to mixtures of products. When
an electron-withdrawing group is attached directly to the double
bond, the bromide typically adds β to that group.
18
(17)
R
2
HC=CHR
1
+
HBr
R
2
H
2
C–CHBrR
1
Treatment of allene with anhydrous hydrogen bromide results
in formation of the expected Markovnikov addition product and
1,3-dimethyl-1,3-dibromocyclobutane (eq 18). 1,3-Disubstituted
allenes, when treated with anhydrous hydrogen bromide, produce
mixtures of HBr addition products resulting from addition of the
proton to either the central ketene carbon or to a terminal ketene
carbon (eq 19). 1,1-Disubstituted allenes add the proton to the cen-
tral allene carbon and bromide to the terminal carbon to produce
1,1-dialkyl-3-bromo-1-propenes (eq 20).
19
•
Br
Br
Br
(18)
+
R
1
HC
• CHR
2
R
1
BrHC
H
CHR
2
(19)
R
1
H
2
C
Br
CHR
2
+
• CR
1
R
2
H
BrH
2
C
CR
1
R
2
(20)
Addition of hydrogen bromide to alkynes is typically slow.
Addition of ammonium bromide salts or Copper(I) Bromide
produces a dramatic acceleration in the rate of the addition (eqs
21 and 22). In the absence of radicals, the isolated products are
typically those expected from Markovnikov addition,
20
although
mixtures of products have been reported when the carbon α to the
triple bond bears an amine.
21
Under radical conditions, hydrogen
bromide adds to alkynes to yield anti-Markovnikov products.
22
In
the presence of Copper(II) Bromide and ammonium bromide,
aqueous hydrobromic acid adds to vinylacetylene to yield 2-
bromobutadiene (eq 23).
23
(21)
R
2
C≡CR
1
+
HBr
R
2
HC=CBrR
1
+
R
2
H
2
C–CBr
2
R
1
Br
R
R
H
R
CHBr
(22)
+
Br
(23)
Hydrobromic acid is superior to hydrochloric acid for the con-
version of 3-acylprop-2-ynal diethyl acetals to 3-acylprop-2-enoic
acids (eq 24).
24
R
O
OEt
OEt
R
O
O
OH
(24)
A list of General Abbreviations appears on the front Endpapers
HYDROBROMIC ACID
3
Reactions with Alcohols. Hydrobromic acid reacts with pri-
mary, secondary, tertiary, allylic, benzylic, and propargylic al-
cohols to give the corresponding bromides (eq 25). As is the
case with the conversion of alcohols to chlorides, a large num-
ber of alternative reagents are available. Although hydrobromic
acid is readily available, greater selectivity is often achieved us-
ing reagents such as Zinc Bromide/Triphenylphosphine/Diethyl
Azodicarboxylate, Phosphorus(III) Bromide, or PPh
3
/Carbon
Tetrabromide. Treatment of alkyl phosphites, phosphonates, and
diphenyl phosphinites with hydrogen bromide produces the alkyl
bromide in which inversion at carbon has occurred. Yields are
higher and conditions milder than the corresponding reaction with
hydrogen chloride.
25
(25)
ROH
RBr
The reactions of carbohydrates and their derivatives with hy-
drogen bromide at the anomeric hydroxy are especially facile ex-
amples of the conversion of alcohols to bromides.
26
When treated with hydrogen bromide, cyclobutylcarbinol re-
arranges to cyclopentyl bromide (eq 26).
27
The analogous
[2.1.1]bicyclocarbinol produces the primary bromide with hydro-
gen bromide (eq 27).
28
OH
Br
(26)
OH
Br
(27)
Concentrated hydrobromic acid reacts with 1,1-dialkylpropar-
gyl alcohols to give products which are dependent upon the
reaction conditions. Products isolated when 3-methylbut-
1-yn-3-ol
was
the
starting
alcohol
include
1-bromo-3,
3-dimethylallene,
3-bromo-3-methyl-1-butyne,
1-bromo-
3-methyl-1,3-butadiene,
1,3-dibromo-3-methylbutene,
and
1,2,3-tribromo-3-methylbutane (eq 28). Tertiary propargyl alco-
hols, in the presence of copper(I) bromide, ammonium bromide,
and 45–48% hydrobromic acid, rapidly produce 1-bromoallenes.
Secondary propargyl alcohols produce 1-bromoallenes using 60%
hydrobromic acid, copper(I) bromide, and ammonium bromide.
29
HO
•
Br
Br
Br
Br
Br
Br
Br
Br
(28)
+
+
+
+
Reactions with Diazo Compounds.
Arylamines can be
converted to aryl bromides by treatment with Sodium Nitrite/
hydrobromic acid/Copper or copper(I) bromide (eq 29).
30
Hydrobromic acid converts α-diazo ketones to α-bromo ketones
in good yield (eq 30).
31
Pure enantiomers of serine and threonine
give good yields and high enantiomeric purity of α-bromo acids
when treated with nitrite and hydrobromic acid.
32
(29)
ArNH
2
[ArN
3
]
ArBr
R
1
N
N
N
–
O
R
2
R
1
Br
O
(30)
R
2
+
Reactions with Nitriles.
Addition of anhydrous hydrogen
bromide to nitriles produces imidoyl bromides (eq 31).
33
Treat-
ment of N-alkylimidoyl bromides with hydrogen bromide results
in isolation of the corresponding iminium bromides (eq 32).
34
Methylene bis(thiocyanate) reacts with hydrogen bromide to pro-
duce the cyclic imidoyl bromide (eq 33).
35
Methyl and phenyl
thiocyanate react with 2 equiv of hydrogen bromide to produce
1-bromothioformimidate salts (eq 34).
36
Cyanogen di-N-oxide re-
acts with hydrobromic acid to produce the hydroxamoyl bromide
analog of oxalyl bromide (eq 35).
37
R
Br
NH
(31)
R
N
R
2
Br
NH
+
Br
–
(32)
R
2
Br
NR
1
R
1
S
N
S
Br
NH•HBr
(33)
CH
2
(SCN)
2
RS
Br
NH
2
+
Br
–
(34)
RSCN
Br
NOH
ONC CNO
Br
NOH
(35)
Reactions with Sulfur Compounds.
Thiols react with
paraformaldehyde and hydrobromic acid to yield bromomethyl
thioethers (see bromomethylation above). Benzenesulfonamides,
benzenesulfonohydrazides, and benzenesulfinic acids can all
react with hydrobromic acid to yield disulfides or sulfenyl bro-
mides, depending upon the reaction conditions (eqs 36–38). Hy-
drogen bromide appears to be better than hydrogen chloride for
the preparation of disulfides from benzenesulfonamides, but less
satisfactory than hydrogen chloride for the conversion of benzene-
sulfonohydrazides to disulfides.
38
Sulfoxides are converted into
bromosulfonium bromides or sulfides (eq 39).
39
Chloro(trifluoro-
methyl)sulfine reacts with anhydrous hydrogen bromide to pro-
duce 1-bromo-1-chloro-2,2,2-trifluoroethylsulfenyl bromide in
high yield (eq 40).
40
Additional information is included under
the section on the in situ generation of Bromine (see below).
(36)
ArSBr
+
ArSSAr
ArSO
2
NR
2
(37)
ArSBr
+
ArSSAr
ArSO
2
NHNR
2
(38)
ArSBr
+
ArSSAr
ArSO
2
H
Avoid Skin Contact with All Reagents
4
HYDROBROMIC ACID
O
S
Me
Me
S
Me
Me
Br
S
Me
Me (39)
+
Br
–
F
F
F
S
Cl
O
F
F
F
S
Cl
Br
Br
(40)
Reactions with Silicon Compounds.
Phenylsilanes react
with hydrogen bromide to yield benzene and the bromosilane
(eq 41). The reaction is more facile than the reaction with hy-
drogen chloride. Increasing the electronegativity of substituents
on silicon decreases the ease with which the aryl–silicon bond
is broken.
41
t
-Butyldimethylsilyl ethers of phenols are cleaved
to phenols at rt using a mixture of hydrobromic acid and Potas-
sium Fluoride (eq 42).
42
Triethylaminosilanes are converted to
the corresponding bromosilanes in the presence of hydrobromic
acid/Sulfuric Acid (eq 43).
43
Ph Si
R
R
R
Br Si
R
R
R
(41)
Si
O
R
R
R
Ph
OH
Ph
(42)
Si
NH
2
Et
Et
Si
Br
Et
Et
X
(43)
X
Transhalogenation Reactions. Alkyl chlorides can be con-
verted to alkyl bromides using hydrogen bromide in the presence
of iron(III) bromide (eq 44).
44
This conversion can also be ef-
fected under neutral conditions by heating the chloride with a
metal bromide in acetone, an alcohol, or ethyl bromide.
45
(44)
RCl
RBr
Acid chlorides react with anhydrous hydrogen bromide to yield
the corresponding acid bromides (eq 45).
46
This conversion may
also be effected using Bromotrimethylsilane.
47
(45)
R
Cl
O
R
Br
O
Trichloromethylsulfenyl chloride reacts with concentrated
hydrobromic acid to yield trichloromethylsulfenyl bromide
(eq 46).
48
Dichloromethyl methyl sulfide produces dibromo-
methyl methyl sulfide when treated with anhydrous hydrogen
bromide (eq 47).
49
(46)
Cl
3
CSCl
Cl
3
CSBr
(47)
Cl
2
HCSMe
Br
2
HCSMe
Bromide Isomerization. α,α-Dibromo ketones equilibrate to
α
,α
′
-dibromo ketones in the presence of dilute hydrobromic acid
(eq 48).
50
(48)
Br
Br
O
Br
Br
O
Organoselenium, Organogermanium, and Organorhenium
Chemistry. Selenols react with paraformaldehyde and hydrogen
bromide to produce bromomethyl selenides (see bromomethyla-
tion above). Methyl phenyl selenides are cleaved by hydrogen
bromide in acetic acid to yield phenyl selenols (eq 49).
51
Alkyl
phenyl selenoxides react with hydrogen bromide to yield the
alkyl bromides (eq 50).
52
Selenonium nitroylides give bromoni-
tromethane derivatives when reacted with hydrogen bromide in
ether (eq 51).
53
(49)
PhSeMe
PhSeH
(50)
Ph
Se
R
2
O
R
1
Br
R
2
R
1
(51)
Ph
Se
NO
2
R
Br
NO
2
R
Ph
1,1-Dihydroxy-2,3-diphenylgermirene is converted to the di-
bromide with anhydrous hydrogen bromide in benzene (eq 52).
54
(52)
Ge
Ph
Ph
OH
OH
Ge
Ph
Ph
Br
Br
The pure enantiomer of the pseudotetrahedral rhenium alkyl
complex in eq 53 reacts with concentrated hydrobromic acid to
produce the pure reduced enantiomer. Cleavage of the rhenium–
carbon bond occurs with retention at both carbon and rhenium.
55
Ar
H
D
T
Re
N
PPh
3
Ar
T
D
O
(53)
In Situ Generation of Bromine. Dimethyl Sulfoxide reacts
with hydrobromic acid at about 80
◦
C to produce dimethyl sulfide,
water, and bromine (eq 54). The DMSO/HBr reagent has been
used to oxidize 1,3-diketones to 1,2,3-triketones, acetophenones
to phenylglyoxals, benzylamines to imines, and 4,5-dihydro-
pyridazin-3(2H)-ones to pyridazin-3(2H)-ones.
56
The combina-
tion is also effective in converting stilbenes, 1,2-dibromo-1,2-
diarylethanes, and 2-bromo-1,2-diarylethanols to benzils.
57
It is
possible to use a catalytic amount of hydrogen bromide in some
of these reactions.
(54)
Me
S
Me
O
Me
S
Me
+
HBr
+
H
2
O
+
Br
2
A list of General Abbreviations appears on the front Endpapers
HYDROBROMIC ACID
5
Hydrobromic acid and Hydrogen Peroxide are an effective
combination for the in situ generation of bromine (eq 55). This
combination of reagents can be used for the bromination of alkenes
and aromatics, for the preparation of bromohydrins from alkenes,
and for the preparation of benzylic bromides.
58
(55)
2 HBr
+
H
2
O
2
2
H
2
O
+
Br
2
Hydrobromic acid is a source of bromine when irradiated in the
presence of air or oxygen (eq 56). Ethylbenzene, when photoox-
idized, yields a mixture of acetophenone, 1-phenylethanol, and
1-phenylbromoethane.
59
(56)
4 HBr
+
O
2
2
Br
2
+
2 H
2
O
hν
Related Reagents. Formaldehyde–Hydrogen Bromide; Hy-
drogen Bromide.
1.
(a) Brasted, R. C. In Comprehensive Inorganic Chemistry; Sneed, M. C.;
Maynard, J. L.; Brasted, R. C., Eds.; Van Nostrand: New York, 1954; Vol.
III, p 118. (b) Downs, A. J.; Adams, C. J. In Comprehensive Inorganic
Chemistry
; Bailar, J. C., Jr., Ed.; Pergamon: Oxford, 1973; Vol. 2, p 1280.
2.
(a) Fields, D. L.; Miller, J. B.; Reynolds, D. D., J. Org. Chem. 1964, 29,
2640. (b) Schetty, G., Helv. Chim. Acta 1948, 31, 1229 (Chem. Abstr.
1949, 43, 203d). (c) Bailey, P. S.; Bath, S. S.; Thomsen, W. F.; Nelson,
H. H.; Kawas, E. E., J. Org. Chem. 1956, 21, 297. (d) Böhmer, V.;
Marschollek, F.; Zetta, L., J. Org. Chem. 1987, 52, 3200. (e) Mitchell,
R. H.; Iyer, V. S., Synlett 1989, 55.
3.
Reich, H. J.; Jasperse, C. P.; Renga, J. M., J. Org. Chem. 1986, 51, 2981.
4.
Moussavi, Z.; Depreux, P.; Lesieur, D., Synth. Commun. 1991, 21, 271.
5.
Bardyshev, I. I.; Buinova, É. F.; Protashchik, I. V., J. Org. Chem. USSR
(Engl. Transl.) 1971
, 7, 2398 (Chem. Abstr. 1972, 76, 46 311z).
6.
(a) Julia, M.; Julia, S.; Guegan, R., Bull. Soc. Chem. Fr. 1960, 216 (Chem.
Abstr. 1961
, 55, 5567b). (b) Julia, M.; Julia, S.; Tchen, S.-Y.; Bull. Soc.
Chem. Fr. 1961
, 1849 (Chem. Abstr. 1962, 57, 4535f). (c) Julia, M.;
Julia, S.; Amaudric du Chaffaut, J., Bull. Soc. Chem. Fr. 1960, 1735
(Chem. Abstr. 1961, 55, 17 525d). (d) Gualtieri, F.; Teodori, E.; Bellucci,
C.; Pesce, E.; Piacenza, G., J. Med. Chem. 1985, 28, 1621. (e) Julia,
M.; Julia, S.; Stalla-Bourdillon, B.; Descoins, C., Bull. Soc. Chem. Fr.
1964, 2533 (Chem. Abstr. 1965, 62, 5182d). (f) Julia, M.; Descoins, C.,
Bull. Soc. Chem. Fr. 1962
, 1933 (Chem. Abstr. 1963, 58, 12 414h). (g)
Hatakeyama, S.; Numata, H.; Osanai, K.; Takano, S., J. Chem. Soc.,
Chem. Commun. 1989
, 1893.
7.
(a) McCormick, J. P.; Barton, D. L., J. Chem. Soc., Chem. Commun.
1975, 303. (b) Descoins, C.; Samain, D., Tetrahedron Lett. 1976, 745.
8.
(a) Takano, S.; Iwata, H.; Ogasawara, K., Heterocycles 1978, 9, 1249.
(b) Murray, R. K., Jr.; Morgan, T. K., Jr., J. Org. Chem. 1975, 40, 2642.
(c) Grieco, P. A.; Masaki, Y., J. Org. Chem. 1975, 40, 150.
9.
(a) For a discussion of factors influencing oxirane cleavage, see
Buchanan, J. G.; Sable, H. Z. In Selective Organic Transformations;
Thyagarajan, B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 1. (b) For a
review on the mechanism of epoxide cleavage, see Parker, R. E.; Isaacs,
N. S., Chem. Rev. 1959, 59, 737. (c) Bordwell, F. G.; Frame, R. R.; Strong,
J. G., J. Org. Chem. 1968, 33, 3385. (d) Layachi, K.; Ariès-Gautron, I.;
Guerro, M.; Robert, A., Tetrahedron 1992, 48, 1585. (e) Hudrlik, P. F.;
Hudrlik, A. M.; Rona, R. J.; Misra, R. N.; Withers, G. P., J. Am. Chem.
Soc. 1977
, 99, 1993.
10.
(a) Jenkins, T. C.; Naylor, M. A.; O’Neill, P.; Threadgill, M. D.; Cole,
S.; Stratford, I. J.; Adams, G. E.; Fielden, E. M.; Suto, M. J.; Stier, M.
A., J. Med. Chem. 1990, 33, 2603. (b) Heine, H. W.; Proctor, Z., J. Org.
Chem. 1958
, 23, 1554. (c) Buss, D. H.; Hough, L.; Richardson, A. C., J.
Chem. Soc. 1965
, 2736. (d) Gensler, W. J., J. Am. Chem. Soc. 1948, 70,
1843.
11.
(a) Eaton, P. E.; Jobe, P. G.; Reingold, I. D., J. Am. Chem. Soc. 1984,
106
, 6437. (b) Eaton, P. E.; Jobe, P. G.; Nyi, K., J. Am. Chem. Soc. 1980,
102
, 6636. (c) Eaton, P. E.; Millikan, R.; Engel, P., J. Org. Chem. 1990,
55
, 2823.
12.
(a) Wilson, E. R.; Frankel, M. B., J. Org. Chem. 1985, 50, 3211.
(b) Paul, R.; Tchelitcheff, S., Bull. Soc. Chem. Fr. 1953, 1014. (c) Ogawa,
S.; Suzuki, M.; Tonegawa, T., Bull. Chem. Soc. Jpn. 1988, 61, 1824.
13.
(a) Zaugg, H. E., J. Am. Chem. Soc. 1950, 72, 2998. (b) Plieninger,
H., Chem. Ber. 1950, 83, 268. (c) Stork, G.; Hill, R. K., J. Am. Chem.
Soc. 1957
, 79, 495. (d) Cottrell, I. F.; Hands, D.; Kennedy, D. J.; Paul,
K. J.; Wright, S. H. B.; Hoogsteen, K., J. Chem. Soc., Perkin Trans. 1
1991, 1091. (e) Orlek, B. S.; Wadsworth, H.; Wyman, P.; Hadley, M. S.,
Tetrahedron Lett. 1991
, 32, 1241.
14.
(a) Landini, D.; Montanari, F.; Rolla, F., Synthesis 1978, 771.
(b) Newkome, G. R.; Gupta, V. K.; Griffin, R. W.; Arai, S., J. Org.
Chem. 1987
, 52, 5480. (c) Grubbs, R. H.; Pancoast, T. A.; Grey, R. A.,
Tetrahedron Lett. 1974
, 2425.
15.
Leleu, M. J., Cah. Notes Doc. 1976, 82, 127 (Chem. Abstr. 1978, 88, 26
952d).
16.
(a) Doxsee, K. M.; Feigel, M.; Stewart, K. D.; Canary, J. W.; Knobler,
C. B.; Cram, D. J., J. Am. Chem. Soc. 1987, 109, 3098. (b) Ramesh, D.;
Kar, G. K.; Chatterjee, B. G.; Ray, J. K., J. Org. Chem. 1988, 53, 212.
17.
For a compilation of specific reagents used to convert aryl ethers to
phenols, see Larock, R. C. Comprehensive Organic Transformations;
VCH: New York, 1989; p 502.
18.
(a) Roedig, A., Methoden Org. Chem. (Houben-Weyl) 1960, V/4, 102.
(b) Larock, R. C.; Leong, W. W., Comprehensive Organic Synthesis 1991,
4
, 279. (c) Traynham, J. G.; Pascual, O. S., J. Org. Chem. 1956, 21, 1362.
(d) Dowd, P.; Shapiro, M.; Kang, J., Tetrahedron 1984, 40, 3069.
19.
(a) Taylor, D. R., Chem. Rev. 1967, 67, 338. (b) Caserio, M. C. In Selective
Organic Transformations
; Thyagarajan, B. S., Ed.; Wiley: New York,
1970; 1, p 239.
20.
(a) Hiyama, T.; Wakasa, N.; Ueda, T.; Kusumoto, T., Bull. Chem. Soc.
Jpn. 1990
, 63, 640. (b) Baird, M. S.; Dale, C. M.; Lytollis, W.; Simpson,
M. J., Tetrahedron Lett. 1992, 33, 1521. (c) Grob, C. A.; Cseh, G., Helv.
Chim. Acta 1964
, 47, 194 (Chem. Abstr. 1964, 60, 10 492g). (d) Cousseau,
J., Synthesis 1980, 805.
21.
Mori, M.; Higuchi, Y.; Kagechika, K.; Shibasaki, M., Heterocycles 1989,
29
, 853.
22.
Skell, P. S.; Allen, R. G., J. Am. Chem. Soc. 1958, 80, 5997.
23.
Keegstra, M. A.; Verkruijsse, H. D.; Andringa, H.; Brandsma, L., Synth.
Commun. 1991
, 21, 721.
24.
Obrecht, D.; Weiss, B., Helv. Chim. Acta 1989, 72, 117.
25.
(a) Hudson, H. R., Synthesis 1969, 112. (b) For a compilation of
specific reagents used to convert alcohols to bromides, see Larock, R.
C. Comprehensive Organic Transformations; VCH: New York, 1989; pp
354 and 361.
26.
(a) Fernez, A.; Stoffyn, P. J., Tetrahedron 1959, 6, 139 (Chem. Abstr.
1959, 53, 21 675h). (b) Wysocki, R. J.; Siddiqui, M. A.; Barchi, J. J.;
Driscoll, J. S.; Marquez, V. E., Synthesis 1991, 1005.
27.
Demjanow, N. J., Chem. Ber. 1907, 40, 4959.
28.
Wiberg, K. B.; Lowry, B. R.; Colby, T. H., J. Am. Chem. Soc. 1961, 83,
3998.
29.
(a) Landor, S. R.; Patel, A. N.; Whiter, P. F.; Greaves, P. M., J. Chem. Soc.
(C)
, 1966, 1223. (b) Moulin, F., Helv. Chim. Acta 1951, 34, 2416 (Chem.
Abstr. 1952
, 46, 7036h). (c) Favorskaya, T. A., Zh. Obshch. Khim. 1940,
10
, 461 (Chem. Abstr. 1940, 34, 7845
1
).
30.
(a) Rinehart, K. L., Jr.; Kobayashi, J.; Harbour, G. C.; Gilmore, J.;
Mascal, M.; Holt, T. G.; Shield, L. S.; Lafargue, F., J. Am. Chem. Soc.
1987, 109, 3378. (b) Bigelow, L. A., Org. Synth., Coll. Vol. 1941, 1, 135.
(c) Hartwell, J. L., Org. Synth., Coll. Vol. 1955, 3, 185.
Avoid Skin Contact with All Reagents
6
HYDROBROMIC ACID
31.
(a) Dauben, W. G.; Hiskey, C. F.; Muhs, M. A., J. Am. Chem. Soc. 1952,
74
, 2082. (b) Pettit, G. R.; Green, B.; Das Gupta, A. K.; Whitehouse, P.
A.; Yardley, J. P., J. Org. Chem. 1970, 35, 1381.
32.
(a) Larchevêque, M.; Petit, Y., Tetrahedron Lett. 1987, 28, 1993.
(b) Larchevêque, M.; Mambu, L.; Petit, Y., Synth. Commun. 1991, 21,
2295.
33.
Ulrich, H. The Chemistry of Imidoyl Halides; Plenum: New York, 1968;
p 66.
34.
Ulrich, H. The Chemistry of Imidoyl Halides; Plenum: New York, 1968;
p 100.
35.
Johnson, F.; Madroñero, R., Adv. Heterocycl. Chem. 1966, Vol. 6, 131.
36.
Allenstein, E.; Quis, P., Chem. Ber. 1964, 97, 3162 (Chem. Abstr. 1965,
62
, 1562g).
37.
Grundmann, C.; Mini, V.; Dean, J. M.; Frommeld, H. D., Justus Liebigs
Ann. Chem. 1965
, 687, 191.
38.
(a) Burawoy, A.; Vellins, C. E., J. Chem. Soc. 1954, 90. (b) Burawoy,
A.; Turner, C., J. Chem. Soc. 1950, 469. (c) Yung, D. K.; Forrest, T. P.;
Manzer, A. R.; Gilroy, M. L., J. Pharm. Sci. 1977, 66, 1009. (d) Searles,
S.; Nukina, S., Chem. Rev. 1959, 59, 1095.
39.
Iselin, B., Helv. Chim. Acta 1961, 44, 61 (Chem. Abstr. 1961, 55, 17
522d).
40.
Fritz, H.; Sundermeyer, W., Chem. Ber. 1989, 122, 1757 (Chem. Abstr.
1989, 111, 153 179a).
41.
(a) Mitter, F. K.; Pollhammer, G. I.; Hengge, E., J. Organomet. Chem.
1986, 314, 1. (b) Hager, R.; Steigelmann, O.; Müller, G.; Schmidbaur,
H., Chem. Ber. 1989, 122, 2115. (c) Schmidbaur, H.; Zech, J.; Rankin, D.
W. H.; Robertson, H. E., Chem. Ber. 1991, 124, 1953. (d) Matsumoto, H.;
Yokoyama, N.; Sakamoto, A.; Aramaki, Y.; Endo, R.; Nagai, Y., Chem.
Lett. 1986
, 1643. (e) Fritz, G.; Kummer, D., Z. Anorg. Allg. Chem. 1961,
308
, 105 (Chem. Abstr. 1961, 55, 18 412a).
42.
Sinhababu, A. K.; Kawase, M.; Borchardt, R. T., Synthesis 1988, 710.
43.
Bailey, D. L.; Sommer, L. H.; Whitmore, F. C., J. Am. Chem. Soc. 1948,
70
, 435.
44.
(a) Yoon, K. B.; Kochi, J. K., J. Chem. Soc., Chem. Commun. 1987, 1013.
(b) Roedig, A., Methoden Org. Chem. (Houben-Weyl) 1960, V/4, 354.
45.
(a) Bowers, S. D., Jr.; Sturtevant, J. M., J. Am. Chem. Soc. 1955, 77,
4903. (b) Bailey, W. J.; Fujiwara, E., J. Am. Chem. Soc. 1955, 77, 165.
(c) Willy, W. E.; McKean, D. R.; Garcia, B. A., Bull. Chem. Soc. Jpn.
1976, 49, 1989.
46.
Staudinger, H.; Anthes, E., Chem. Ber. 1913, 46, 1417 (Chem. Abstr.
1913, 7, 2576).
47.
Schmidt, A. H.; Russ, M.; Grosse, D., Synthesis 1981, 216 (Chem. Abstr.
1981, 95, 42 299w).
48.
Dear, R. E. A.; Gilbert, E. E., Synthesis 1972, 310.
49.
Boberg, F.; Winter, G.; Schultze, G. R., Chem. Ber. 1956, 89, 1160 (Chem.
Abstr. 1957
, 51, 3434f).
50.
(a) Djerassi, C.; Scholz, C. R., J. Am. Chem. Soc. 1947, 69, 2404.
(b) Szabó, L.; Tóth, I.; T˝oke, L.; Kolonits, P.; Szantay, C., Chem. Ber.
1976, 109, 3390 (Chem. Abstr. 1977, 86, 55 266x). (c) Djerassi, C.;
Scholz, C. R., J. Org. Chem. 1948, 13, 697.
51.
Christiaens, L.; Renson, M., Bull. Soc. Chim. Belg. 1970, 79, 235 (Chem.
Abstr. 1970
, 73, 3726j).
52.
Hevesi, L.; Sevrin, M.; Krief, A., Tetrahedron Lett. 1976, 2651.
53.
Semenov, V. V.; Melnikova, L. G.; Shevelev, S. A.; Fainzil’berg, A. A.,
Izv. Akad. Nauk SSSR, Ser. Khim. 1980
, 216 (Chem. Abstr. 1980, 92, 215
200a).
54.
Volpin, M. E.; Koreshkov, Yu. D.; Dulova, V. G.; Kursanov, D. N.,
Tetrahedron 1962
, 18, 107.
55.
O’Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A., J. Am.
Chem. Soc. 1987
, 109, 4837.
56.
(a) Schipper, E.; Cinnamon, M.; Rascher, L.; Chiang, Y. H.; Oroshnik,
W., Tetrahedron Lett. 1968, 6201. (b) Fletcher, T. L.; Pan, H.-L.; J.
Chem. Soc. 1965
, 4588. (c) Gilman, H.; Eisch, J., J. Am. Chem. Soc.
1955, 77, 3862. (d) Desmond, R.; Mills, S.; Volante, R. P.; Shinkai, I.,
Synth. Commun. 1989
, 19, 379. (e) Nakao, T.; Obata, M.; Yamaguchi,
Y.; Tahara, T., Chem. Pharm. Bull. 1991, 39, 524.
57.
(a) Yusubov, M. S.; Filimonov, V. D., J. Org. Chem. USSR (Engl. Transl.)
1989, 25, 199. (b) Yusubov, M. S.; Filimonov, V. D., J. Org. Chem. USSR
(Engl. Transl.) 1989
, 25, 1410. (c) Yusubov, M. S.; Filimonov, V. D.;
Ogorodnikov, V. D., Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 216 (Chem.
Abstr. 1991
, 115, 28 773w).
58.
(a) Johnson, R.; Reeve, K., Spec. Chem. 1992, 12, 292. (b) Brandsma,
L.; de Jong, R. L. P., Synth. Commun. 1990, 20, 1697.
59.
(a) Fuchs, B.; Mayer, W. J. W.; Abramson, S., J. Chem. Soc., Chem.
Commun. 1985
, 1711. (b) Nakada, M.; Fukushi, S.; Hirota, M., Bull.
Chem. Soc. Jpn. 1990
, 63, 944.
John E. Mills
R. W. Johnson Pharmaceutical Research Institute,
Spring House, PA, USA
A list of General Abbreviations appears on the front Endpapers