ZINC–ACETIC ACID
1
Zinc–Acetic Acid
1
Zn–AcOH
(Zn)
[7440-66-6]
Zn
(MW 65.39)
InChI = 1/Zn
InChIKey = HCHKCACWOHOZIP-UHFFFAOYAS
(AcOH)
[64-19-7]
C
2
H
4
O
2
(MW 60.06)
InChI = 1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/f/h3H
InChIKey = QTBSBXVTEAMEQO-TULZNQERCK
(reducing agent; causes reductive elimination of vicinal hetero-
atoms;
2
–
15
cleaves heteroatom–heteroatom bonds;
16
–
27
reduces
allylic, benzylic, or α-carbonyl-substituted heteroatoms,
28
–
34
activated carbonyls,
35
–
37
and alkenes
38
–
40
)
Physical Data:
see entries for Zinc and Acetic Acid.
Form Supplied in:
although zinc is available in a variety of forms,
the overwhelming majority of zinc–acetic acid reductions use
zinc powder.
Purification:
acid washing is not uncommon, but not always vital.
Introduction. Zinc in acetic acid is capable of a wide range of
reduction reactions. Although many of these can also be performed
by a great number of other reagents, this reagent is of particular
value in that good chemoselectivities can often be achieved. Some
such instances are noted in the text and equations below; many
of the references have also been chosen to demonstrate selective
reduction in sensitive, polyfunctional molecules.
Reductive Elimination of Vicinal Heteroatoms.
2
–
15
A great
variety of combinations of heteroatom substituents has been suc-
cessfully reductively eliminated by Zn/AcOH (eq 1 and Table 1).
Cosolvents such as ether, THF, CH
2
Cl
2
, i-PrOH, or water have
all been used. Reaction temperatures vary from case to case, but
yields reported are typically good to excellent.
X
Y
(1)
Zn
AcOH
A set of protecting groups, based upon Zn/AcOH elimination
of the 2,2,2-trichloroethoxy group, has been developed, and is
discussed below as a special case. Table 1 records several of the
combinations of heteroatoms successfully eliminated under these
Table 1
Reductive eliminations of vicinal heterosubstituents (eq 1)
X
Y
Yield (%)
Cl
OR
see next section
Cl
Cl
96
2
Cl
SO
2
R
87
3
Cl
NO
2
79
4
Br
OR
88
5
Br
Br
94
6
OR
OR
92
7
conditions. Perhaps surprisingly, the relative stereochemistry of
the two carbon centers does not have to permit trans coplanarity
of the heteroatoms.
4,7
Heterocyclic rings may be cleaved by these reactions. Thus,
effective reversal of iodolactonization (eq 2)
8
or of epoxidation
(after iodide ring opening) (eq 3)
9
may be achieved.
I
CO
2
Me
O
O
CO
2
Me
CO
2
H
(2)
Zn, AcOH
reflux, 0.5 h
100%
O
R
(3)
R
NaI, NaOAc
Zn, AcOH, 0 °C
67%
Halogenated oximes (1) eliminate to give the nitrile in variable,
but often good to excellent, yields (eq 4).
10
N
R
Hal
OMe
(4)
Zn, AcOH, DMF
(1)
RCN
150 °C, 0.5–8 h
23–95%
2,2,2-Trichloroethoxy-based
Protecting
Groups.
11
–
15
Valuable protecting groups for alcohols,
11
phenols,
11c
amines,
11c
and carboxylic acids,
12
and an introduction/protection reagent
for thiols,
13
all dependent upon the lability of this group to
Zn/AcOH reductive elimination, have been developed. They are
summarized in Table 2.
Table 2
Protecting groups based on OCH
2
CCl
3
elimination
Functionality
Protected form
ROH
11a
ROCH
2
CCl
3
ROH
11b
ROCH
2
OCH
2
CCl
3
ROH
11c,d
ROC(O)OCH
2
CCl
3
ROH
11e
ROC(O)OCMe
2
CCl
3
ArOH
11c
ArOC(O)OCH
2
CCl
3
R
2
NH
11c
R
2
NC(O)OCH
2
CCl
3
RCO
2
H
12
RC(O)OCH
2
CCl
3
RSH
13
RSC(O)OCH
2
CCl
3
The trichloroacetylidene acetal has also been proposed as a po-
tential protection for diols, similarly deprotectable.
14
Also, along
similar lines, the 2-iodoethyl carbamate protection for amines, de-
protectable by Zn dust alone in MeOH, has been proposed,
15
but
has found relatively little use.
Heteroatom–Heteroatom Cleavage.
16
–
27
N=N double
bonds can be cleaved
16
by Zn/AcOH; less frequently, hydrazines
17
may be obtained from the reduction (eqs 5 and 6).
17
Hydrazones
may also be reduced to amines,
18
as used
18b
in a variant of the
classical Knorr pyrrole synthesis. Diazo ketone (2) has been suc-
cessfully reduced, despite the apparent potential for adverse side
reactions (eq 7).
19
(5)
Zn, AcOH
PhN=NAr
PhNH-NHAr
90–100%
Avoid Skin Contact with All Reagents
2
ZINC–ACETIC ACID
N
NAr
2
Ar
1
O
–
(6)
Zn, AcOH
Ar
1
NH-NHAr
2
+
89%
O
O
(7)
N
2
Zn, AcOH
(2)
0 °C, THF
50%
Aromatic nitro groups
20a
(aliphatic nitro groups can yield
oximes,
20b
even though not all such would be stable under all
reaction conditions), hydroxylamines,
21
oximes
22
(once again,
finding use
22b
in a Knorr pyrrole synthesis), N-nitro-
23a
and
N
-nitrosoamines,
23b
aromatic N-oxides,
24
and aromatic N–S
bonds
25
have all been reduced to amines with Zn/AcOH. These
references include ample evidence of the ability of this reagent to
perform the desired reaction, while leaving intact, for example,
bromides,
22
carbon-bonded sulfur atoms,
20,23b
and isolated C=C
double bonds.
21
It will, of course, be understood that the newly
liberated amines often undergo spontaneous intramolecular reac-
tions. Sulfonamides
26
can also be reduced to the thiols.
Zn/AcOH can act as a useful alternative reagent for reductive
workup of ozonolysis reactions,
27
which can be considered, at
least formally, to involve O–O bond cleavage (see Ozone).
Curiously, the vigor of the conditions reported to have been
employed for these disparate reactions does not seem to follow
any consistent pattern; reaction conditions, therefore, may need
individual determination in many cases.
Carbon–Heteroatom Cleavage.
28
–
34
Substitution of N,
28
O,
29
S,
30
or halogen,
31
for example, at an allylic, benzylic, or
α
-carbonyl-substituted carbon atom renders the heteroatom liable
to cleavage with Zn/AcOH. In allylic systems, double bond migra-
tion usually occurs. If conjugated to a carbonyl group, migration
still occurs, giving the β,γ-product (eq 8),
32a
but these can be eas-
ily reconjugated (eq 9).
32b
Homoallylic reduction
33
has also been
reported in a constrained system (eq 10).
CO
2
Et
Br
(8)
CO
2
Et
Zn, AcOH
83%
O
O
OAc
OAc
O
O
OAc
92%
1. Zn, AcOH
(9)
2. Et
3
N
O
OTs
(10)
O
Zn, AcOH, H
2
O
reflux, 1.5 h
Cleavage α to a carbonyl group has been exploited in the use of
phenacyl protecting groups.
34
The reduction of compounds such
as (3) (for their formation, via Dichloroketene see Trichloroacetyl
Chloride) retains the strained four-membered ring, and often gives
excellent yields (eq 11).
31c
Bu
O
Bu
O
Cl
Cl
(11)
Zn, AcOH
TMEDA, EtOH
(3)
rt, 2.5 h
72–86%
Carbonyl Reduction.
35
–
37
Quinones are reduced to hydro-
quinones by Zn/AcOH at reflux.
35a
Incorporation of Ac
2
O into the
reaction mixture gives the respective diacetate.
35a
Under milder
conditions (rt), the intermediate γ-hydroxycyclohexenone may be
intercepted in surprisingly high yield (72–90%).
35b
Diaryl ketones may be reduced to the alcohols,
36a
but a com-
peting dimerization has also been reported
36b
in some unusual
cases. Reduction of phthalimide (4) proceeds well and, notably,
with regiospecificity (eq 12).
37
N
O
O
Me
N
O
Me
(12)
Zn, AcOH
(4)
reflux, 12 h
79%
Reduction of Activated Alkenes.
38
–
40
Carbonyl (mono-
38a
or di-
38b
) substitution renders a C=C double bond liable to re-
duction by Zn/AcOH. α,β,γ,δ-Dienones may yield either α,β-
38a
or β,γ-enones
38c
in equally high yields. A recent modification,
39
at lower temperature (rt), and with much shorter reaction times,
uses ultrasonication; excellent yields were achieved.
α
,β-Unsaturated nitro compounds can also be reduced.
40
Under
mild conditions an oxime can be obtained (eq 13)
40a
(cf. Sodium
Borohydride, which reduces the C=C double bond); more vigor-
ous reaction leads to the corresponding ketone.
40b
O
O
O
Ph
NO
2
OMe
O
O
O
Ph
NOH
OMe
(13)
Zn, AcOH, Et
2
O
reflux, 1 h
87%
Aza-heterocycle Ring Contraction.
A variety of polyaza
six-ring heterocycles undergo contraction with formal excision
of N, e.g. eq 14.
41a
Further heteroatoms in the ring are toler-
ated: 1,2,3-triazines yield pyrazoles
41b
and 1,2,4-triazines yield
imidazoles,
41c
with the latter usually requiring reflux tempera-
ture. The utility of indole syntheses from cinnolines
41d
by this
method should be noted. Adjacency of heteroatoms is not required:
conversions of pyrimidine to pyrrole
42a,b
and 1,3,5-triazine to
imidazole
42c
have been recorded. The mechanism of these con-
versions is unclear, but ring dihydro derivatives
41a,42b
are thought
to be involved.
N
N
MeO
2
C
CO
2
Me
N
H
MeO
2
C
CO
2
Me
(14)
Zn, AcOH
25 °C, 24 h
63%
Reduction of Aryl Substituents.
Although, as mentioned
above, many potentially labile functionalities are stable to
A list of General Abbreviations appears on the front Endpapers
ZINC–ACETIC ACID
3
Zn/AcOH, aryl iodides may be dehalogenated.
43
Substitution of
Cl or Br at the 2-position of heteroaromatics also renders them
liable to reduction, often with superb selectivity (eqs 15 and 16).
44
N
Cl
Cl
N
Cl
Zn, AcOH, H
2
O
(15)
70 °C, 6 h
90%
S
Br
Br
Br
S
Br
Zn, AcOH, H
2
O
(16)
reflux, 4 h
89%
Related Reagents. Iron; Tin; Zinc Amalgam; Zinc–Zinc
Chloride.
1.
Fieser & Fieser 1967
, 1, 1276.
2.
Attenburrow, J.; Connett, J. E.; Graham, W.; Oughton, J. F.; Ritchie,
A. C.; Wilkinson, P. A., J. Chem. Soc. 1961, 4547.
3.
Kay, I. T.; Punja, N., J. Chem. Soc. (C) 1968, 3011.
4.
Komeichi, Y.; Osawa, Y.; Duax, W. L.; Cooper, A., Steroids 1970, 15,
619.
5.
Goodman, L.; Winstein, S.; Boschan, R., J. Am. Chem. Soc. 1958, 80,
4312.
6.
Martin, J. D.; Pérez, C.; Ravelo, J. L., J. Am. Chem. Soc. 1985, 107, 516.
7.
Goto, G., Bull. Chem. Soc. Jpn. 1977, 50, 186.
8.
Hamanaka, N.; Seko, T.; Miyazaki, T.; Naka, M.; Furuta, K.; Yamamoto,
H., Tetrahedron Lett. 1989, 30, 2399.
9.
Hatakeyama, S.; Numata, H.; Takano, S., Tetrahedron Lett. 1984, 25,
3617.
10.
Sakamoto, T.; Mori, H.; Takizawa, M.; Kikugawa, Y., Synthesis 1991,
750.
11.
(a) Lemieux, R. U.; Driguez, H., J. Am. Chem. Soc. 1975, 97, 4069.
(b) Jacobson, R. M.; Clader, J. W., Synth. Commun. 1979, 9, 57.
(c) Windholz, T. B.; Johnston, D. B. R., Tetrahedron Lett. 1967, 2555.
(d) Imoto, M.; Kusunose, N.; Kusumoto, S.; Shiba, T., Tetrahedron Lett.
1988, 29, 2227. (e) Eckert, H.; Listl, M.; Ugi, I., Angew. Chem., Int. Ed.
Engl. 1978
, 17, 361.
12.
Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.;
Ramage, R.; Rangamathan, S.; Vorbrüggen, H., J. Am. Chem. Soc. 1966,
88
, 852.
13.
Sheehan, J. C.; Commons, T. J., J. Org. Chem. 1978, 43, 2203.
14.
Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis,
2nd ed.; Wiley: New York, 1991; p 122.
15.
Grimshaw, J., J. Chem. Soc. 1965, 7136.
16.
Barton, D. H. R.; Lamotte, G.; Motherwell, W. B.; Narang, S. C., J.
Chem. Soc., Perkin Trans. 1 1979
, 2030.
17.
(a) Ruggli, P.; Hölzle, K., Helv. Chim. Acta 1943, 26, 814 (Chem. Abstr.
1944, 38, 2640). (b) Budziarek, R.; Drain, D. J.; Macrae, F. J.; McLean,
J.; Newbold, G. T.; Seymour, D. E.; Spring, F. S.; Stansfield, M., J. Chem.
Soc. 1955
, 3158.
18.
(a) Goodwin, R. C.; Bailey, J. R., J. Am. Chem. Soc. 1925, 47, 167.
(b) Treibs, A.; Schmidt, R.; Zinsmeister, R., Chem. Ber. 1957, 90, 79
(Chem. Abstr. 1957, 51, 10 480).
19.
Vedejs, E., J. Chem. Soc., Chem. Commun. 1971, 536.
20.
(a) Saupe, T.; Krieger, C.; Staab, H. A., Angew. Chem., Int. Ed. Engl.
1986, 25, 451. (b) Johnson, K.; Degering, E. F., J. Am. Chem. Soc. 1939,
61
, 3194.
21.
Howell, A. R.; Pattenden, G., J. Chem. Soc., Chem. Commun. 1990,
103.
22.
(a) Prasitpan, N.; Johnson, M. E.; Currie, B. L., Synth. Commun. 1990,
20
, 3459. (b) Fischer, H., Org. Synth., Coll. Vol. 1955, 3, 513.
23.
(a) Shriner, R. L.; Neumann, F. W., Org. Synth., Coll. Vol. 1955, 3, 73.
(b) Allen, C. F. H.; Vanallan, J. A., J. Org. Chem. 1948, 13, 603.
24.
Freeman, J. P.; Gannon, J. J.; Surbey, D. L., J. Org. Chem. 1969, 34,
187.
25.
Shealy, Y. F.; O’Dell, C. A., J. Org. Chem. 1964, 29, 2135.
26.
Hendrickson, B.; Bergeron, R., Tetrahedron Lett. 1970, 345.
27.
Callant, P.; Ongena, R.; Vandewalle, M., Tetrahedron 1981, 37,
2085.
28.
Gaskell, A. J.; Joule, J. A., Tetrahedron 1968, 24, 5115.
29.
Cope, A. C.; Barthel, J. W.; Smith, R. D., Org. Synth., Coll. Vol. 1963,
4
, 218.
30.
Gotthardt, H.; Nieberl, S.; Doenecke, J., Liebigs Ann. Chem. 1980, 873
(Chem. Abstr. 1980, 93, 239 355).
31.
(a) Grieco, P. A., J. Org. Chem. 1972, 37, 2363. (b) Danheiser, R. L.;
Savariar, S., Tetrahedron Lett. 1987, 28, 3299. (c) Danheiser, R. L.;
Savariar, S.; Cha, D. D., Org. Synth., Coll. Vol. 1993, 8, 82.
32.
(a) Moppett, C. E.; Sutherland, J. K., J. Chem. Soc. (C) 1968, 3040.
(b) Roth, B. D.; Roark, W. H., Tetrahedron Lett. 1988, 29, 1255.
33.
Rakhit, S.; Gut, M., J. Am. Chem. Soc. 1964, 86, 1432.
34.
Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis,
2nd ed.; Wiley: New York, 1991; pp 153, 238.
35.
(a) Crawford, H. M.; Lumpkin, M.; Mcdonald, M., J. Am. Chem. Soc.
1952, 74, 4087. (b) Speziale, A. J.; Stephens, J. A.; Thompson, Q. E., J.
Am. Chem. Soc. 1954
, 76, 5011.
36.
(a) Gross, M. E.; Lankelman, H. P., J. Am. Chem. Soc. 1951, 73, 3439.
(b) Agranat, I.; Tapuhi, Y., J. Am. Chem. Soc. 1979, 101, 665.
37.
Brewster, J. H.; Fusco, A. M., J. Org. Chem. 1963, 28, 501.
38.
(a) Corey, E. J.; Watt, D. S., J. Am. Chem. Soc. 1973, 95, 2303. (b) Büchi,
G.; Foulkes, D. M.; Kurono, M.; Mitchell, G. F.; Schneider, R. S., J. Am.
Chem. Soc. 1967
, 89, 6745. (c) Fieser, L. F.; Rajagopalan, S.; Wilson,
E.; Tishler, M., J. Am. Chem. Soc. 1951, 73, 4133.
39.
Marchand, A. P.; Reddy, G. M., Synthesis 1991, 198.
40.
(a) Baer, H. H.; Rank, W., Can. J. Chem. 1972, 50, 1292. (b)
Anagnostopoulos, C. E.; Fieser, L. F., J. Am. Chem. Soc. 1954, 76, 532.
41.
(a) Boger, D. L.; Coleman, R. S.; Panek, J. S.; Yohannes, D., J. Org.
Chem. 1984
, 49, 4405. (b) Chandross, E. A.; Smolinsky, G., Tetrahedron
Lett. 1960
(13), 19. (c) Laakso, P. V.; Robinson, R.; Vandrewala, H. P.,
Tetrahedron 1957
, 1, 103. (d) Besford, L. S.; Bruce, J. M., J. Chem. Soc.
1964, 4037.
42.
(a) Patterson, J. M., Synthesis 1976, 281. (b) Longridge, J. L.; Thompson,
T. W., J. Chem. Soc. (C) 1970, 1658. (c) Cook, A. H.; Jones, D. G., J.
Chem. Soc. 1941
, 278.
43.
Giza, C. A.; Hinman, R. L., J. Org. Chem. 1964, 29, 1453.
44.
(a) Marais, J. L. C.; Backeburg, O. G., J. Chem. Soc. 1950, 2207. (b)
Gronowitz, S.; Raznikiewicz, T., Org. Synth., Coll. Vol. 1973, 5, 149.
Peter Ham
SmithKline Beecham Pharmaceuticals, Harlow, UK
Avoid Skin Contact with All Reagents