GLYOXYLIC ACID
1
Glyoxylic Acid
CHO
CO
2
H
[298-12-4]
C
2
H
2
O
3
(MW 74.04)
InChI = 1/C2H2O3/c3-1-2(4)5/h1H,(H,4,5)/f/h4H
InChIKey = HHLFWLYXYJOTON-JLSKMEETCL
(formaldehyde equivalent in Mannich reaction; reagent and its
esters undergo a variety of additions, condensations, and
Diels–Alder reactions)
Alternate Name:
glyoxalic acid; oxoacetic acid.
Physical Data:
deliquescent prisms; mp 98
◦
C (anhydrous),
50–52
◦
C (monohydrate); pK
a
2.32.
Solubility:
sparingly sol ether, alcohol, benzene; v sol water.
Form Supplied in:
crystalline solid as monohydrate [563-96-2]
and in 50% aqueous solution.
Preparative Methods:
glyoxylic acid is widely available, but the
methyl, ethyl, and benzyl esters can be made easily from the
ozonolysis of the corresponding maleate and fumarate esters.
1
Purification:
crystallized from water as the monohydrate.
Handling, Storage, and Precaution:
corrosive and hygroscopic.
Mannich and Related Condensations.
Glyoxylic acid (1)
has been extensively used in the Pictet–Spengler reaction to
synthesize various β-carboline derivatives from the corresponding
tryptamines (eq 1).
2
Reaction of glyoxylic acid and Hydroxyl-
amine
in water at pH 5 with excess LiBH
3
CN at rt affords
α
-hydroxyaminoacetic acid (eq 2).
3
The reagent reacts with an
alkaline solution of o-methoxyphenol to form (R,S)-4-hydroxy-3-
methoxymandelic acid (eq 3).
4
On the other hand, condensation
of (1) with acetophenone gives 3-benzoylacrylic acid.
5
CHO
CO
2
H
BnO
N
H
CO
2
Et
NH
2
BnO
N
H
CO
2
Et
N
(1)
1.
(1)
toluene, reflux
2. xylenes, Pd/C, reflux
CHO
CO
2
H
LiBH
3
CN (excess)
HO
H
N
CO
2
H
(1)
NH
2
OH, H
2
O
(2)
CHO
CO
2
H
OH
OMe
HO
OMe
CO
2
H
OH
(1)
NaOH (aq)
(3)
Treatment of glyoxylic acid with ethyl aminoformate followed
by benzothiophene gives N-ethoxycarbonylbenzothienylglycine
(eq 4) via the Mannich reaction.
6
Reaction of (1) with an alkyl-
or arylamine in the presence of Pentacarbonyliron in alcoholic
1N KOH, under an atmosphere of carbon monoxide followed
by HCl acidification affords the corresponding N-alkyl- or
arylglycines (eq 5).
7
Treatment of the thioacetals of various ke-
tones and aldehydes with (1) in acetic acid and hydrochloric acid
at rt results in transthioacetalization and liberates the carbonyl
compounds (eq 6).
8
CHO
CO
2
H
(4)
S
(1)
S
HO
2
C
H
N
CO
2
Et
2.
1. H
2
NCO
2
Et
CHO
CO
2
H
(5)
RNH
2
, Fe(CO)
5
R
H
N
CO
2
H
(1)
R = Me, Bu, Ph, PhCH
2
1N KOH, EtOH, CO, rt
CHO
CO
2
H
S
S
R
1
R
2
O
R
2
R
1
(1)
AcOH, HCl, rt
(6)
R
1
, R
2
= –(CH
2
)
5
–, Ph, H
Glyoxylic acid, in the presence of 2N NaOH in ethanol, adds
to 3-nitropropanal ethylene acetal to give 2-hydroxy-3-nitro-5-
ethylenedioxypentanoic acid in quantitative yield (eq 7).
9
Reac-
tion of n-butyl glyoxylate (2) with 1-morpholinocyclopentene in
refluxing cyclohexane (Dean–Stark trap), followed by cooling and
hydrolysis affords butyl 2-oxocyclopentylideneacetate (eq 8).
10
CHO
CO
2
H
(7)
O
O
NO
2
O
O
NO
2
HO
CO
2
H
(1)
2N NaOH, EtOH, 20 °C
CHO
CO
2
Bu
N
O
CO
2
Bu
O
(2)
1.
cyclohexane, reflux
(8)
2. 50% HCl, rt
Treatment of methyl glyoxylate (3) with (S)-Proline in a 2:1
ratio in DMSO at 90
◦
C gives a diastereomeric mixture of
oxapyrrolizidines (eq 9).
11
CHO
CO
2
Me
N
O
CO
2
Me
CO
2
Me
(3)
DMSO, 90 °C
(9)
proline
Diels–Alder Reactions.
Methyl or ethyl glyoxylates react
with acylaza–Wittig reagents in refluxing benzene to produce the
diacylimines, as shown in eq 10.
12
These are moderately reactive
dienophiles for Diels–Alder reactions with various dienes, such
as the Danishefsky diene
13a
or Cohen diene,
13b
to furnish the
corresponding tetrahydropyridines.
12
Avoid Skin Contact with All Reagents
2
GLYOXYLIC ACID
CHO
CO
2
R
1
R
N
PPh
3
O
N
O
CO
2
R
1
R
(3) R
1
= Me
(4) R
1
= Et
C
6
H
6
,
∆
(10)
R = Me, t-BuO, BnO
Methyl glyoxylate (3) itself undergoes a hetero–Diels–Alder
reaction with the Danishefsky diene in refluxing benzene. Hydro-
lysis of the resultant adduct furnishes a 1:1 mixture of stereoiso-
mers of 2-methoxy-6-methoxycarbonyl-5,6-dihydro-γ-pyrone
(eq 11).
12
Similarly, reaction of methyl glyoxylate with 1,1-
dimethoxy-3-trimethylsiloxy-1,3-butadiene,
catalyzed
by
Eu(fod)
3
in CH
2
Cl
2
at rt, regioselectively produces 2-methoxy-
6-methoxycarbonyl-5,6-dihydro-γ-pyrone which, on subsequent
hydrolysis with dilute aq HCl in refluxing benzene, produces
6-methoxycarbonyl-3-oxo-δ-lactone
(eq
12).
14
Hetero-
Diels–Alder reaction of n-butyl glyoxylate with 2-ethoxy-
1,3-butadiene at 60
◦
C affords 4-ethoxy-6-butoxycarbonyl-5,6-
dihydro-2H-pyran as the main adduct (eq 13).
15
CHO
CO
2
Me
MeO
OTMS
O
O
OMe
CO
2
Me
(3)
1.
(11)
C
6
H
6
, reflux
2. 0.1N HCl, THF
CHO
CO
2
Me
OMe
MeO
OTMS
O
O
OMe
CO
2
Me
O
O
O
CO
2
Me
(3)
Eu(fod)
3
CH
2
Cl
2
, rt
(12)
dil HCl
benzene
reflux
CHO
CO
2
Bu
OEt
O
EtO
CO
2
Bu
(2)
60 °C
(13)
Butyl glyoxylate (2) undergoes an addition reaction with
cyclohexene in the presence of Tin(IV) Chloride at 40–45
◦
C
to produce butyl 2-hydroxy-2-(2-cyclohexenyl)acetate (eq 14).
16
Methyl glyoxylate undergoes an asymmetric carbonyl-ene
reaction with isobutene catalyzed by a chiral titanium com-
plex (generated in situ from (R)-1,1
′
-Bi-2,2
′
-naphthol
(BINOL)
and Dichlorotitanium Diisopropoxide over molecular sieves in
methylene chloride) to produce (R)-methyl α-hydroxy-γ-methyl-
4-pentenoate in high optical purity (eq 15).
17
Under similar reac-
tion conditions, methyl glyoxylate (3) reacts with the symmetrical
bis-allyl silyl ether shown in eq 16 to produce the correspond-
ing α-hydroxy ester (>99% ee) through an asymmetric catalytic
desymmetrization (eq 16).
18
CHO
CO
2
Bu
(14)
(2)
cyclohexene, SnCl
4
CO
2
Bu
OH
CHO
CO
2
Me
CO
2
Me
OH
(i-PrO)
2
TiCl
2
(R)-BINOL
molecular sieves (4 Å)
CH
2
Cl
2
95% ee
(3)
(15)
CHO
CO
2
Me
O
Si(Me
2
)
O
CO
2
Me
OH
Si(Me
2
)
(i-PrO)
2
TiCl
2
(R)-BINOL
molecular sieves (4 Å)
CH
2
Cl
2
, 0 °C
99% ee
(3)
(16)
Reaction of methyl or ethyl glyoxylate with (S)-4-benzyl-
oxypent-(2E)-2-enyl(tributyl)stannane in the presence of SnCl
4
at
−78
◦
C produces (1R,5S,3Z)-5-benzyloxy-1-methoxycarbonyl-
hex-3-en-1-ol with excellent diastereoselectivity (eq 17).
19
Ethyl
glyoxylate (4)u undergoes a [3 + 2] cycloaddition with 5-
ethoxy-2-phenyloxazole in the presence of a Lewis acid cat-
alyst (a 1:1 mixture of Titanium(IV) Chloride and Titanium
Tetraisopropoxide
) to produce a mixture of cis- and trans-4,5-
bis(ethoxycarbonyl)-2-oxazolines in an 84:16 ratio, whereas use
of SnCl
4
reverses the selectivity and yields the same mixture in a
15:85 ratio (eq 18).
20
CHO
CO
2
Me
SnBu
3
OCH
2
Ph
PhCH
2
O
CO
2
Me
OH
SnCl
4
, –78 °C
(3)
(17)
CHO
CO
2
Et
N
O
Ph
OEt
N
O
Ph
CO
2
Et
CO
2
Et
N
O
Ph
CO
2
Et
CO
2
Et
acetonitrile
Lewis acid (cat)
(4)
(18)
+
TiCl
4
, Ti(OR)
4
(1:1)
SnCl
4
84:16
15:85
The imine derived from methyl glyoxylate and di-p-anisyl-
methylamine (DAM-NH
2
)
21
reacts with ketene (generated in situ
from the reaction of the corresponding alkanoyl chloride and tri-
ethylamine in refluxing hexane, benzene or methylene chloride)
to afford the corresponding cis-4-methoxycarbonyl-β-lactams as
single isomers (eq 19).
22
HC
CO
2
R
(19)
N DAM
R
1
O
Cl
N
O
DAM
CO
2
R
R
1
Et
3
N,
∆
CH
2
Cl
2
or hexane or PhH
R
1
= Me, Et, i-Pr, Bn, Ph
Related Reagents.
Formaldehyde.
1.
Jung, M. E.; Shishido, K.; Davis, L. H., J. Org. Chem. 1982, 47, 891,
and references cited therein.
2.
Hollinshead, S. P.; Trudell, M. L.; Skolnick, P.; Cook, J. M., J. Med.
Chem. 1990
, 33, 1062. For a review on the Pictet–Spengler reaction, see
Whaley, W. M.; Govindachari, T. R., Org. React. 1951, 6, 151.
A list of General Abbreviations appears on the front Endpapers
GLYOXYLIC ACID
3
3.
Ahmad, A., Bull. Chem. Soc. Jpn. 1974, 47, 1819.
4.
Fitiadi, A. J.; Schaffer, R., J. Res. Nat. Bur. Stand., Sect. A 1974, 78, 411.
5.
Ozeki, K.; Ishizuka, Y.; Sawada, M.; Shimamura, H.; Ichikawa, T.; Sato,
M.; Yaginuma, H., Yakugaku Zasshi 1987, 107, 268 (Chem. Abstr. 1988,
108
, 21 459v).
6.
Gardner, J. P.; Jackson, B. G., Org. Prep. Proced. Int. 1987, 19, 439.
7.
Watanabe, Y.; Shim, S. C.; Mitsudo, T.; Yamashita, M.; Takegami, Y.,
Chem. Lett. 1975
, 699.
8.
Muxfeldt, H.; Unterweger, W. D.; Helmchen, G., Synthesis 1976, 694.
9.
Williams, T. M.; Crumbie, R.; Mosher, H. S., J. Org. Chem. 1985, 50,
91.
10.
Barco, A.; Benetti, S., Synthesis 1981, 199.
11.
Forte, M.; Orsini, F.; Pelizzoni, F., Gazz. Chim. Ital. 1985, 115, 569.
12.
Jung, M. E.; Shishido, K.; Light, L.; Davis, L., Tetrahedron Lett. 1981,
22
, 4607.
13.
(a) Danishefsky, S.; Kitahara, T., J. Am. Chem. Soc. 1974, 96, 7807.
(b) Cohen, T.; Ruffner, R. J.; Shull, D. W.; Fogel, E. R.; Falck, J. R., Org.
Synth. 1979
, 59, 202; Org. Synth., Coll. Vol. 1988, 6, 737.
14.
Castellino, S.; Sims, J. J., Tetrahedron Lett. 1984, 25, 2307.
15.
Huang, J.; Chen, X., Zhongshan Daxue Xuebao, Ziran Kexueban 1991,
30
, 74 (Chem. Abstr. 1992, 117, 90 083r).
16.
Klimova, E. I.; Antonova, N. D.; Arbuzov, Y. A., Zh. Org. Khim. 1969,
5
, 1345 (Chem. Abstr. 1969, 71, 112 473d).
17.
Mikami, K.; Terada, M.; Nakai, T., J. Am. Chem. Soc. 1989, 111,
1940.
18.
Mikami, K.; Narisawa, S.; Shimizu, M.; Terada, M., J. Am. Chem. Soc.
1992
, 114, 6566.
19.
McNeill, A. H.; Thomas, E. J., Tetrahedron Lett. 1990, 31, 6239.
20.
Suga, H.; Shi, X.; Fujieda, H.; Ibata, T., Tetrahedron Lett. 1991, 32, 6911.
21.
Kobayashi, Y.; Ito, Y.; Terashima, S., Bull. Chem. Soc. Jpn. 1989, 62,
3041.
22.
Palomo, C.; Aizpurua, J. M.; Ontoria, J. M.; Iturburu, M., Tetrahedron
Lett. 1992
, 33, 4823.
M. Sreenivasa Reddy & James M. Cook
University of Wisconsin–Milwaukee, Milwaukee, WI, USA
Avoid Skin Contact with All Reagents