background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

18 

Power in Circuits 

Consider the input impedance of a transmission line circuit, with an 

applied voltage 

v

(t)

 inducing an input current 

i

(t)

.   

 
 
 
 
 
 
 
 
For sinusoidal excitation, we can write 





/2 , /2

0

0

( )

cos(

)

( )

cos(

)

v t

V

t

i t

I

t

  









  

 

where 





 is the phase difference 

between

 voltage and current. Note 

that 

= 0

 only when the input impedance is real (purely resistive). 

v(t) 

i(t) 

Z

in

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

19 

 
The time-dependent input power is given by 
 





0 0

0 0

( )

( ) ( )

cos(

) cos(

)

cos( )

cos(2

)

2

P t

v t i t

V I

t

t

V I

t







  



 

  

 

 
The power has two (Fourier) components: 

 
(A)  an average value 

0 0

cos( )

2

V I



 

(B)  an oscillatory component with frequency 

2f 

0 0

cos(2

)

2

V I

t

  

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

20 

The power flow changes periodically in time with an oscillation like 

(B) 

about the average value 

(A)

. Note that only when 

= 0

 we have 

cos(



= 1

, implying that for a resistive impedance the power is 

always positive (flowing from generator to load).   
 
When 

voltage

 and 

current

 are out of phase, the average value of the 

power has lower magnitude than the peak value of the oscillatory 
component. Therefore, during portions of the period of oscillation 
the power can be negative (flowing from load to generator).  This 
means that when the power flow is positive, the reactive component 
of the input impedance stores energy, which is reflected back to the 
generator side when the power flow becomes negative. 
 
For an oscillatory excitation, we are interested in finding the 
behavior of the power during one full period, because from this we 
can easily obtain the average behavior in time.  From the point of 
view of power consumption, we are also interested in knowing the 
power dissipated by the resistive component of the impedance. 
 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

21 

We can also rewrite the time-dependent current as 

0

0

0

( )

cos(

)

cos cos

sin sin

i t

I

t

I

t

I

t



   



 





 

where we have used the trigonometry formula 





cos

cos

cos

sin

sin

A

B

A

B

A

B







 

 
This result yields an equivalent expression for the power 
 

0

0

0

0

2

0 0

0 0

( )

cos(

)

cos(

) cos( )

cos(

)

sin(

) sin( )

cos( ) cos (

)

sin( ) sin(2

)

2

1

1

P t

V

t I

t

V

t I

t

V I

V I

t

t







 



















Active (Real

Reactive Power

) Power











 

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

22 

The 

active power

 corresponds to the power dissipated by the 

resistive

 component of the impedance, and it is always positive. 

 
The 

reactive power 

corresponds to the power stored and then 

reflected by the 

reactive

 component of the impedance.  It oscillates 

from positive to negative during the period. 
 
Until now we have discussed properties of instantaneous power.  
Since we are considering time-harmonic periodic signals, it is very 
convenient to consider the time-average power 

0

1

( )

( )

T

P t

P t dt

T



 

 

where 

T = 1 / f

   is the period of the oscillation. 

 
 
We can use either the Fourier or the active/reactive power 
formulation to determine the time-average power. 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

23 

Fourier representation 
 
 

0 0

0

0 0

0

0 0

1

( )

cos( )

2

1

cos(2

cos

)

2

0

( )

2

T

T

V I

P t

dt

T

V I

t

V

t

T

I

d



 





 









 

 
 
 
 

As one should expect, the time-average power flow is simply given 
by the Fourier component corresponding to the average of the 
original signal. 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

24 

Active/Reactive power representation 
 
 

2

0 0

0

0 0

0

0

0

1

( )

cos( ) cos (

)

1

sin( ) sin(2

)

2

co

0

s( )

2

T

T

P t

V

V

I

t dt

T

V I

t d

I

t

T



 

















 

 
 
 

This result tells us that the time-average power flow is the average 
of the 

active power

.  The 

reactive power

 has zero time-average, 

since power is stored and completely reflected by the reactive 
component of the input impedance during the period of oscillation. 

background image

Transmission Lines

© Amanogawa, 2000 – Digital Maestro Series

25

The maximum of the 

reactive power

 is

{

}

( ) (

)

( )

0 0

0 0

max

max{

sin

sin 2

}

sin

2

2

reac

V I

V I

P

t

=

φ

ω

=

φ

Since the time-average of the reactive power is zero, we often use
the maximum value above as an indication of the reactive power.

The sign of the phase 

φ

 

tells us about the imaginary part of the

impedance (reactance)

φ

 > 0   

The reactance is inductive

Current is lagging with respect to voltage
Voltage is leading with respect to current

φ

 < 0   

The reactance is capacitive
Voltage is lagging with respect to current
Current is leading with respect to voltage

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

26 

If the net reactance is inductive 

    

V

Z I

R I

j L I





 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 j

L I 

R I 

Im 

Re 

Current lags 



 

> 0 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

27 

If the net reactance is capacitive 

    

1

V

Z I

R I

j

I

C









 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- j I /

 C 

 

R I 

Im 

Re 

Voltage lags 



 

< 0

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

28 

 
In many engineering situations, we use the root-mean-square 
(r.m.s.) values of quantities.  For a given signal 

0

( )

cos(

)

v t

V

t





 

the r.m.s. value is defined as  

 

 

 

2

2

2

0

0

0

0

2

2

0

0

0

1

1

cos

cos

1

1

cos

2

2

T

T

rms

V

V

t dt

V

t d t

T

T

V

d

V

















   



 

 
This result is valid for sinusoidal signals.  Each signal shape 
corresponds to a specific coefficient ( 

peak factor

 = 

0

/

rms

V

V

 ) that 

allows one to convert directly from peak to r.m.s. values.   

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

29 

The 

peak factor 

for 

sinusoidal signals 

is 

0

2

1.4142

rms

V

V



 

 
For a 

symmetric triangular signal

 the peak factor is 

 

0

3

1.732

rms

V

V



 

 
 
 
For a 

symmetric square signal

 the peak factor is simply  

 

0

1

rms

V

V



 

 
 

V

t

V

0

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

30 

For a 

non-sinusoidal periodic signal

, we can determine the r.m.s. 

value by using a very important theorem of vector spaces.  If we 
decompose the non-sinusoidal signal into its 

Fourier components

 

 

 

1

2

3

( )

( )

( )

( )

av

k

k

V t

V

V t

V t

V t

V

t













 

then 

 









 





2

2

2

( )

k

k

k

k

rms

rms

rms

V t

V t

V

t





 

 
So, the r.m.s. value of the signal is computed as 
 

 

 

 

2

2

2

2

1

2

3

rms

av

rms

rms

rms

V

V

V

V

V











 

 
 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

31 

So far, we have used 

peak values

 for the amplitude of voltage and 

current.  In terms of 

r.m.s. values

, the time-average power for a 

sinusoidal signal is 

0

0

( )

cos( )

cos( )

2

2

rms rms

V

I

P t

V

I



 

 



 

Finally, we can relate the time-average power to the phasors of 
voltage and current. Since 









0

0

0

0

( )

cos(

)

Re

exp(

)

( )

cos(

)

Re

exp(

) exp(

)

v t

V

t

V

j t

i t

I

t

I

j

j t



 





   

 



 

 
we have phasors 

0

0

exp(

)

V

V

I

I

j





 

 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

32 

The time-average power in terms of phasors is given by 
 

 





*

0 0

0 0

1

1

( )

Re

Re

exp(

)

2

2

cos( )

2

P t

V I

V I

j

V I



 









 

 
Note that one must always use the complex conjugate of the phasor 
current to obtain the time-average power. It is important to 
remember this when voltage and current are expressed as 
functions of each other.  Only when the impedance is purely 

resistive, 

I = I* = I

0

  since  



 

= 0

 
Also, note that the time-average power is always a real positive 
quantity and that it 

is not 

the phasor of the time-dependent power.  

It is a common mistake to think so.  

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

33 

Now, we consider power flow including explicitly the generator, to 
understand in which conditions 

maximum power transfer

 to a load 

can take place. 
 
 
 

          

 

*

1

1

Re

2

R

in

G

G

R

in

G

G

R

in

in in

Z

V

V

Z

Z

I

V

Z

Z

P

V

I











 

 

 
 
 
 
 

Z

V

V

in 

I

in

 

Generator 

Z

Load 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

34 

 
As a first case, we examine resistive impedances 

G

G

R

R

Z

R

Z

R





 

 
Voltage and current are 

in phase

 at the input. The time-average 

power dissipated by the load is 
 

*

2

2

1

1

( )

2

1

2

(

)

R

G

G

G

R

G

R

R

G

G

R

R

P t

V

V

R

R

R

R

R

V

R

R



 









 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

35 

To find the 

load 

resistance that maximizes power transfer to the 

load for a given generator we impose 

( )

0

R

d P t

dR



 

 

from which we obtain 

2

2

4

0

(

)

(

)

2

(

)

0

(

)

(

)

2

0

R

R

G

R

G

R

R

G

R

G

R

G

R

R

R

G

d

R

dR

R

R

R

R

R

R

R

R

R

R

R

R

R

R









































 

We conclude that for maximum power transfer the load resistance 
must be identical to the generator resistance. 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

36 

Let’s consider now 

complex impedances

 

R

R

R

G

G

G

Z

R

jX

Z

R

jX









 

 

For maximum power transfer, generator and load impedances must 
be complex conjugate of each other 

*

R

G

R

G

R

G

Z

Z

R

R

X

X







 

 

 
This can be easily understood by considering that, 

to maximize

 the 

active 

power

 supplied to the load, 

voltage

 and 

current

 of the 

generator should remain 

in phase

.  If the reactances of generator 

and load are opposite and cancel each other along the path of the 
current, the generator will only see a resistance.  Voltage and 
current will be in phase with maximum power delivered to the load. 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

37 

The 

total time-average power

 supplied by the 

generator

 in 

conditions of maximum power transfer is 

 

*

2

2

1

1

1

1

1

Re

2

2

2

4

tot

G

in

G

G

R

R

P

V I

V

V

R

R



 





 

 
The 

time-average power

 supplied to the 

load

 is 

 

 

*

*

*

2

2

1

1

1

Re

Re

2

2

1

1

1

Re

2

4

8

R

in

in in

G

G

G

R

G

R

R

R

G

G

R

R

Z

P

V

I

V

V

Z

Z

Z

Z

R

jX

V

V

R

R















 























 

!















 

!

 

 
 
 

background image

Transmission Lines 

© Amanogawa, 2000 – Digital Maestro Series 

38 

The 

power dissipated

 by the 

internal generator impedance

 is 

 





*

2

2

2

1

Re (

)

2

1

1

1

1

1

1

4

8

8

G

G

in

in

G

G

G

R

R

R

P

V

V

I

V

V

V

R

R

R



 









 

 
 
We conclude that, in conditions of 

maximum power transfer,

 only 

half

 of the 

total active power

 supplied by the 

generator

 is actually 

used by the 

load

.  The generator impedance dissipates the 

remaining half of the available active power. 
 
 

This may seem a disappointing result, but it is the best one can do 
for a real generator with a given internal impedance!