background image

Praca kontrolna – sem. IV LO dla dorosłych rok szk. 2014/2015 

1.  Wyznacz wzór funkcji wykładniczej f(x) = a

x

, jeśli do jej wykresu należy punkt  

P =(-1, 3). Naszkicuj wykres  funkcji f. 

2.  Oblicz: 

a)  log

3

27 

b) 

log 

36

 6 +log 

16

 4 – log 

8

 2,  

 

b)  c) log 

6

 4 +log 

6

 27 – log 

6

 3. 

3.  Oblicz:  

 

4.  Wyznacz cztery początkowe wyrazy ciągu (a

n

):   a

n

 = (-1)

n

 · 3

n – 1

5.  Wykaż, że ciąg jest malejący: a

n

 = n – 2n

2

6.  Oblicz pierwszy wyraz i różnicę ciągu arytmetycznego, jeśli:      a

9

 = 60 i a

21

 = 0. 

7.  Dla jakich wartości x podane wyrazy są trzema kolejnymi wyrazami ciągu: 

a)  arytmetycznego: x + 3, x

2

, 4x; 

b)  geometrycznego: 3x + 4, 2x, 2x + 6. 

8.  Oblicz iloraz i wyraz ogólny ciągu geometrycznego (a

n

), jeśli a

3

 = - 27, a

8

 = -8. 

9.  Oblicz sumę ośmiu początkowych wyrazów ciągu geometrycznego: 

1, 3, 9, 27, …. 

10. Dany jest trapez równoramienny o podstawach długości 3 cm i 9 cm, którego 

obwód wynosi 22 cm. Oblicz wartości funkcji trygonometrycznych kąta 
zawartego między dłuższą podstawą trapezu  a jego ramieniem.  

11. Oblicz: ( cos 135° - cos 45°) · tg 135°. 
12. Dłuższa przekątna rombu ma długość 8 cm. Oblicz wysokość rombu, jeśli 

krótsza przekątna ma długość 6cm. 

13. Promień okręgu wpisanego w sześciokąt foremny jest równy 1 cm. Oblicz 

obwód i pole tego sześciokąta. 

 
 
 
 
 
 
 
 
 
 

Praca kontrolna – sem. IV LO dla dorosłych rok szk. 2014/2015 

1.  Wyznacz wzór funkcji wykładniczej f(x) = a

x

, jeśli do jej wykresu należy punkt 

P =(-1, 3). Naszkicuj wykres  funkcji f. 

2.  Oblicz: 

a)  log

3

27 

b) 

log 

36

 6 +log 

16

 4 – log 

8

 2,  

 

c) log 

6

 4 +log 

6

 27 – log 

6

 3. 

3.  Oblicz:  

 

4.  Wyznacz cztery początkowe wyrazy ciągu (a

n

):   a

n

 = (-1)

n

 · 3

n – 1

5.  Wykaż, że ciąg jest malejący: a

n

 = n – 2n

2

6.  Oblicz pierwszy wyraz i różnicę ciągu arytmetycznego, jeśli:      a

9

 = 60 i a

21

 = 0. 

7.  Dla jakich wartości x podane wyrazy są trzema kolejnymi wyrazami ciągu: 

a)  arytmetycznego: x + 3, x

2

, 4x; 

b)  geometrycznego: 3x + 4, 2x, 2x + 6. 

8.  Oblicz iloraz i wyraz ogólny ciągu geometrycznego (a

n

), jeśli a

3

 = - 27, a

8

 = -8. 

9.  Oblicz sumę ośmiu początkowych wyrazów ciągu geometrycznego: 

1, 3, 9, 27, …. 

10. Dany jest trapez równoramienny o podstawach długości 3 cm i 9 cm, którego 

obwód wynosi 22 cm. Oblicz wartości funkcji trygonometrycznych kąta 
zawartego między dłuższą podstawą trapezu  a jego ramieniem.  

11. Oblicz: ( cos 135° - cos 45°) · tg 135°. 
12. Dłuższa przekątna rombu ma długość 8 cm. Oblicz wysokość rombu, jeśli 

krótsza przekątna ma długość 6cm. 

13. Promień okręgu wpisanego w sześciokąt foremny jest równy 1 cm. Oblicz 

obwód i pole tego sześciokąta.