chap01, p01 035

background image

35.

(a) When θ is measured in radians, it is equal to the arclength divided by the radius. For very large

radius circles and small values of θ, such as we deal with in this problem,
the arcs may be
approximated as
straight lines –
which

for

our

purposes

corre-

spond to the di-
ameters d and
D of the Moon
and Sun, respec-
tively. Thus,

............. ...

.......... ......

....... .........

.... ............

. .............

............. ...

.......... ......

....... .........

.... ............

. .............

............. ...

.......... .......

...... ..........

... .............

............. .............

............. .............

............. .............

............. .............

............. .............

............. .............

............. .............

............. .............

.............

..............................

.............................

..............................

.............................

.............................

..............................

.............................

.............................

..............................

.............................

.............................

..............................

.............................

.........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......................................................

......................................................

......................................................

...............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D

d

R

Sun

R

Moon

θ





................................

..............

...........

.........

........

........

.......

.......

.......

......

......

......

......

......

......

......

....

....

...

...

...

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

..

..

..

....

............

...........

...........

...........

...........

...........

............

............

..............

................

.......................

................................

θ =

d

R

Moon

=

D

R

Sun

=

R

Sun

R

Moon

=

D

d

which yields D/d = 400.

(b) Various geometric formulas are given in Appendix E. Using r

s

and r

m

for the radius of the Sun and

Moon, respectively (noting that their ratio is the same as D/d), then the Sun’s volume divided by
that of the Moon is

4
3

πr

3

s

4
3

πr

3

m

=



r

s

r

m



3

= 400

3

= 6.4

× 10

7

.

(c) The angle should turn out to be roughly 0.009 rad (or about half a degree). Putting this into the

equation above, we get

d = θR

Moon

= (0.009)



3.8

× 10

5



3.4 × 10

3

km .


Document Outline


Wyszukiwarka

Podobne podstrony:
chap01, p01 027
chap01, p01 036
chap01, p01 023
chap01, p01 026
chap01, p01 020
chap01, p01 014
chap01, p01 044
chap01, p01 002
chap01, p01 029
chap01, p01 011
chap01, p01 030
chap01, p01 043
chap01, p01 007
chap01, p01 015
chap01, p01 032
chap01, p01 016
chap01, p01 009
chap01, p01 038
chap01, p01 021

więcej podobnych podstron