6w to dpl 2011

background image

Technika optymalizacji

1

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

II Zadanie programowania liniowego PL

przy ograniczeniach

:

( )

x

c

x

T

f

=

max

0

2

2

1

1

x

b

x

A

b

x

A

dim x=[n*1], dim c=[n*1]

Macierze A

1

, A

2

odpowiadają za współczynniki w m

1

i m

2

ograniczeniach

dim A

1

=[m

1

* n], dim A

2

=[m

2

* n]

Wektory b

1

, b

2

odpowiadają za prawe strony ograniczeń

dim b

1

=[m

1

*1], dim b

2

=[m

2

*1]

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Optymalne rozwiązanie zadania programowania liniowego PL metodą

simpleks

Twierdzenie 4.5

Twierdzenie 4.5

Rozwiązanie bazowe dopuszczalne układu równań Ax=b

jest rozwiązaniem optymalnym zadania PL, jeśli są spełnione dwa warunki:

(i) Warunek prymalnej dopuszczalności:

{

}

m

i

dla

y

io

,...,

1

0

(ii) Warunek optymalności

N

j

R

j

dla

y

≥ 0

0

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Zadanie programowania liniowego dla ograniczeń mniejszościowych i

większościowych

I faza - należy znaleźć pierwsze rozwiązanie bazowe dopuszczalne
poprzez rozwiązanie zadania pomocniczego

II faza - maksymalizacja funkcji celu x

0

dla następnego rozwiązania

bazowego dopuszczalnego wg algorytmu simpleks.

Metoda dwóch faz

Krok 1

. (start). Rozpoczynamy algorytm od znalezienia pierwszego rozwiązania

bazowego dopuszczalnego. Należy sprawdzić dopuszczalność

rozwiązania: czy Tak - idź do Kroku 2, Nie – STOP.

m

i

dla

y

i

,...,

1

0

0

=

Algorytm simpleks (prymalny) – I faza Krok 1 – nie ma możliwości stworzenia
pierwszego rozwiązania bazowego dopuszczalnego

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Pomocnicza funkcja celu

Uproszczona wersja I fazy metoda dwufazowej simpleks – uzyskanie

bazowego rozwiązania dopuszczalnego

•Jeśli wektor b w początkowej tablicy simpleksowej ma przynajmniej jedną ujemną
współrzędną, to tablica przedstawia niedopuszczalne rozwiązanie bazowe.

•Początkową niedopuszczalną tablicę simpleksową można przekształcić wykorzystując
algorytm simpleks.

•Cel – uzyskanie nieujemnych wartości zmiennych pomocniczych.

•Należy znaleźć najmniejszą wartość

•Wybrany wiersz s będzie stanowił pomocniczą funkcję celu , którą należy zmaksymalizować.

•Kolejne kroki metody simpleks powinny być prowadzone do uzyskania dopuszczalnej tablicy
simpleks, tzn. takiej dla której spełniony jest warunek prymalnej dopuszczalności:

m

i

dla

y

i

,...,

2

,

1

0

0

=

•Koniec I fazy

{

}

m

i

dla

y

y

r

i

i

i

,...,

2

,

1

0

,

min

0

0

=

<

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Krok 1.

(start- wybór pomocniczej funkcji celu). Rozpoczynamy algorytm od

znalezienia wiersza s , dla którego oraz

Krok 2

. (Wybór zmiennej wchodzącej do bazy). Wybierz jako zmienną wchodzącą

do bazy taką zmienną

dla której

Typową regułą jest wybór zmiennej , dla której:

0

<

sk

y

N

k

R

x

N

k

R

k

x

,

{

}

0

:

min

0

<

=

sk

sk

R

j

k

y

y

y

N

k

x

Idż do Kroku 3.

N

sk

R

k

dla

y

≥ 0

0

0

<

s

y

{

}

m

i

y

y

s

i

i

i

,...,

2

,

1

,

0

:

min

0

0

=

<

=

Jeśli brak takiego s ( ) to tablica odpowiada dopuszczalnemu
rozwiązaniu bazowemu – należy przejść do II fazy.

m

i

dla

y

i

,...,

2

,

1

0

0

=

Jeśli jest brak takiej zmiennej (

) to jest brak

rozwiązania dopuszczalnego. Jest to problem sprzeczny.

Pomocnicza funkcja celu

Uproszczona wersja I fazy metoda dwufazowej simpleks

cd.

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

>

=

=

0

,

,...,

1

:

min

0

0

ik

i

ik

io

i

rk

r

y

y

m

i

y

y

y

y

Krok 4. (eliminacja Gauss’a). Wyznacz oraz

względem zmiennych

oraz zmiennej

zgodnie z wyprowadzonymi wzorami.

Podstaw

aby otrzymać pierwsze rozwiązanie bazowe dopuszczalne.

Idź do Kroku 1.

Krok ten czasami nazywa się wymianą zmiennej bazowej ( piwotyzacją).

k

x

,

,

N

Bi

R

i

x

}

{

,

k

R

j

x

N

j

0

i

}

{

,

0

=

=

Br

N

j

x

k

R

j

x

Krok 3. (wybór zmiennej usuwanej z bazy). Wybierz jako zmienną usuwaną z bazy
taką zmienną

dla której

Jeśli wiele zmiennych spełnia ten warunek, wybierz arbitralnie jedną z nich.

Taki przypadek zawsze istnieje, ponieważ

Idż do Kroku 5.

,

Br

x

r

B

x

0

0

0

<

<

sk

s

y

i

y

background image

Technika optymalizacji

2

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Przykład II zadania programowania liniowego

metoda dwufazowa simpleks





+

+

+

+

+

=

0

x

,

6

x

1

x

1

3

2

x

1

x

1

x

1

x

2

:

x

X

2

1

2

2

1

1

1

1

6

x

5

1

-1

3

x

4

-1

-2

-2

x

3

-6

-1

0

x

0

-x

2

-x

1

1

1

6

x

1

2

1

9

x

4

1

2

10

x

3

-5

1

6

x

0

-x

2

-x

5

2

1

0

X

x

x

6

x

1

x

max

+

=

-0,5

0,5

1,5

X

1

0,5

0,5

4,5

X

2

-0,5

1,5

5,5

X

3

2,5

3,5

28,5

x

0

-x

4

-x

5

I faza

II faza cz.1

II faza cz.2

Brak rozwiązania
dopuszczalnego

I rozwiązanie bazowe
dopuszczalne

II rozwiązanie bazowe
dopuszczalne- rozwiązanie
optymalne

6

x

,

0

6

x

1

1

B

0

B

=

=

Rozwiązanie optymalne:

[

]

T

T

x

x

x

x

x

x

0

0

5

,

5

5

,

4

5

,

1

5

4

3

2

1

==

=

5

,

28

0

=

x

5

,

28

,

5

,

4

5

,

1

2

1

0

=

=

B

B

x

x

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Przypadki szczególne – zbiór rozwiązań dopuszczalnych jest zbiorem

pustym - brak rozwiązania

φ

=

X

3

2

1

0

2

1

max

x

x

x

X

x

=

x





+

+

+

=

0

,

2

3

2

2

1

2

2

2

1

:

3

2

3

2

1

3

2

1

x

x

x

x

x

x

x

x

x

x

X

W metodzie dwufazowej simpleks algorytm w I fazie obliczeń nie potrafi stworzyć
pierwszego rozwiązania bazowego dopuszczalnego z powodu braku rozwiązań
dopuszczalnych.

Przykład:

Nie jest spełniony warunek dopuszczalności drugiej tablicy simpleks i jednocześnie druga tablica
wskazuje, że jest brak rozwiązań dopuszczalnych.

-1

1

0

2

x

6

1

-2

1/2

-3

x

5

1

2

-1/2

2

x

4

1

1

-1/2

0

x

0

-x

3

-x

2

-x

1

x

x

x

x

x

6

2

1

0

-1

x

5

x

x

x

x

x

2

x

x

x

x

x

0

-x

3

-x

4

-x

1

0

,

,

,

,

,

2

1

6

5

4

3

2

1

3

4

5

=

x

x

x

x

x

x

x

x

x

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

III Zadanie programowania liniowego PL

przy ograniczeniach

:

x

c

T

x =

0

min

0

x

b

x

A

dim x=[n*1], dim c=[n*1]

Macierz A odpowiada za współczynniki w m ograniczeniach

dim A=[m x n]

Wektor wyrazów wolnych b odpowiada za prawą stronę ograniczeń

dim b =[m*1]

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Postać kanoniczna II zadania PL

0,

,

A

T

=

x

b

x

x

c

x

,

min

0

0,

,

A

s

s

T

=

+

=

x

x

b

x

I

x

x

c

x

s

,

-

,

-

max

0

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Optymalne rozwiązanie II zadania PL metodą dualną simpleks

Twierdzenie:

Twierdzenie:

Rozwiązanie bazowe dopuszczalne układu równań Ax=b

jest rozwiązaniem optymalnym II zadania PL, jeśli są spełnione
warunki:

(i) Warunek dualnej dopuszczalności:

N

oj

R

j

dla

y

≥ 0

(ii) Warunek dualnej optymalności

{

}

m

i

dla

y

i

,...,

1

0

0

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Teoria dualności dla zadania programowania liniowego PL

x

c

T

x =

0

max

0

x

b

x

A

0

v

c

v

A

T

b

v

v

T

=

0

min

Twierdzenie 7.1 :

Jeśli wektor x jest rozwiązaniem dopuszczalnym dla zadania prymalnego i
wektor v jest rozwiązaniem dopuszczalnym dla zadania dualnego, to wartość
funkcji celu w zadaniu dualnym nie może być mniejsza od wartości funkcji
celu w zadaniu prymalnym.

x

c

b

v

T

T

background image

Technika optymalizacji

3

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Teoria dualności dla zadania PL cd.

v

i

x

=

v

b

x

c

T

T

0

=

v

x

T

Twierdzenie 7.2

Dla pary rozwiązań optymalnych zadania prymalnego i dualnego PL
zachodzi warunek:

Twierdzenie 7.3

Niech (x

r

,x

s

) i ( v

r

, v

s

) będą odpowiednio rozwiązaniami dopuszczalnymi zadania

prymalnego i dualnego, przy czym x

s

i v

s

są wektorami zmiennych dopełniających

do postaci kanonicznej zadania w wektorach rozwiązań.

Wtedy (x

r

,x

s

) i ( v

r

, v

s

) będą odpowiednio rozwiązaniami optymalnymi pary zadań

prymalnego i dualnego, jeśli zachodzi warunek komplementarności zmiennych:

tzn.

0

=

+

r

T
s

s

T
r

v

x

v

x

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Twierdzenie 7.4

Jeśli jedno z pary wzajemnie dualnych zadań programowania liniowego ma
rozwiązanie optymalne, to ma je również zadanie dualne i obydwa zadania mają
identyczne wartości funkcji celu.

Twierdzenie 7.5

Jeśli zadanie dualne jest nieograniczone, to zadanie prymalne jest sprzeczne.

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Przykład I zadanie prymalne

2

1

0

1

2

max

x

x

X

x

+

=

x

+

+

+

=

0

,

21

2

6

0

5

:

2

1

2

1

2

1

x

x

x

x

x

x

x

x

X

+

+

+

=

0

,

,

1

2

2

6

:

3

2

1

3

2

1

3

2

1

v

v

v

v

v

v

v

v

v

x

V

3

2

1

0

21

0

5

min

v

v

v

v

V

v

+

+

=

Przykład II System cięcia dłużyc

3

2

1

0

2

.

0

6

.

0

3

.

0

min

v

v

v

v

+

+

=

0

,

,

1200

2

1

0

2100

0

3

7

3

2

1

3

2

1

3

2

1

+

+

+

+

v

v

v

v

v

v

v

v

v

2

1

0

1200

2100

max

x

x

X

x

+

=

x

+

+

+

=

0

,

2

.

0

2

0

6

.

0

1

3

3

.

0

0

7

:

2

1

2

1

2

1

x

x

x

x

x

x

x

x

X

Postać wektora rozwiązań:

[

] [

]

5

4

3

2

1

,

,

,

,

v

v

v

v

v

v

v

v

s

r

=

=

[

] [

]

5

4

3

2

1

,

,

,

,

x

x

x

x

x

x

x

x

s

r

=

=

[

] [

]

0

,

,

0

=

=

r

s

T

s

r

T

v

v

x

x

v

x

zadanie dualne

Technika optymalizacji
Dr inż. Ewa Szlachcic

Wydzia

Wydzia

ł

ł

Elektroniki

Elektroniki

Kierunek

Kierunek

EiT

EiT

III r Potok: Elektronika

III r Potok: Elektronika

.

.

Teoria dualności dla zadania PL

cd.

2

1

0

1

2

max

x

x

X

x

+

=

x

+

+

+

=

0

,

21

2

6

0

5

1

1

:

2

1

2

1

2

1

x

x

x

x

x

x

x

x

X

2

6

21

x

5

1

-1

0

x

4

1

1

5

x

3

-1

-2

0

x

0

x

2

x

1

Zadanie dualne:

I. Rozwiązanie zadania dualnego metodą simpleks

Rozwiązanie optymalne:

a)

Zadanie dualne

b)

Zadanie prymalne

Wartość optymalna funkcji celu:

1/3

1/6

7/2

x

1

4/3

1/6

7/2

x

4

2/3

-1/6

3/2

x

3

-1/3

1/3

7

x

0

x

2

x

5

-1/2

1/4

11/4

x

1

-2

1/2

1/2

x

4

3/2

-1/4

9/4

x

2

1/2

1/4

31/4

x

0

x

3

x

5

[

]

[

]

3

2

1

5

4

5

4

3

2

1

,

,

,

,

,

,

,

,

v

v

v

v

v

v

x

x

x

x

x

x

=

=





=





=

4

1

,

0

,

2

1

,

0

,

0

0

,

2

1

,

0

,

4

9

,

4

11

v

x

4

31

0

0

=

=

v

x


Wyszukiwarka

Podobne podstrony:
6w to dpl 2pl
5w to przypadki 2011
1w to wprowadzenie 2011
6 sposobów na to, PITY 2011, Informacje o podatkach, dokumenty
7w to wlasnosci 2011
4w to simpleks 2011
3w to proglin 2011
2w to przyklady 2011
5w to przypadki 2011

więcej podobnych podstron