p04 063

background image

63. We construct a right triangle starting from the clearing on the south

bank, drawing a line (200 m long)
due north (upward in our sketch)
across the river, and then a line
due west (upstream, leftward in
our sketch) along the north bank
for a distance (82 m) +(1.1 m/s)t,
where the t-dependent contribu-
tion is the distance that the river
will carry the boat downstream
during time t.

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

........................

......

............

...........

.....

The hypotenuse of this right triangle (the arrow in our sketch) also depends on t and on the boat’s speed
(relative to the water), and we set it equal to the Pythagorean “sum” of the triangle’s sides:

(4.0)t =



200

2

+(82 +1.1t)

2

which leads to a quadratic equation for t

46724 +180.4t

14.8t

2

= 0 .

We solve this and find a positive value: t = 62.6 s. The angle between the northward (200 m) leg of the
triangle and the hypotenuse (which is measured “west of north”) is then given by

θ = tan

1



82 +1.1t

200



= tan

1



151

200



= 37

.


Document Outline


Wyszukiwarka

Podobne podstrony:
P04(1)
p04 014
p04 043
p04 021
p41 063
p04 077
68 063
P27 063
p08 063
p04 044
p38 063
p04 023
p04 097
p04 074
p04 058
p04 030
0513 063
p04 095

więcej podobnych podstron