P16 025

background image

25. When displaced from equilibrium, the magnitude of the net force exerted by the springs is

|k

1

x + k

2

x

|

acting in a direction so as to return the block to its equilibrium position (x = 0). Since the acceleration
a = d

2

x/dt

2

, Newton’s second law yields

m

d

2

x

dt

2

=

−k

1

x

− k

2

x .

Substituting x = x

m

cos(ωt + φ)and simplifying, we find

ω

2

=

k

1

+ k

2

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f measures
cycles per second, we obtain

f =

ω

2π

=

1

2π



k

1

+ k

2

m

.

The single springs each acting alone would produce simple harmonic motions of frequency

f

1

=

1

2π



k

1

m

and

f

2

=

1

2π



k

2

m

,

respectively. Comparing these expressions, it is clear that f =



f

2

1

+ f

2

2

.


Document Outline


Wyszukiwarka

Podobne podstrony:
025 odpowiedzialnosc cywilnaid 4009 ppt
p03 025
P16 052
P16 071
P16 067
Plan P16 Kraska rys planu
P16 094
P32 025
025 teatroterapia Dziobak
P16 096
P16 018
P16 037
P23 025
P16 097
AB 4117 01 025
p40 025
p36 025
P16 087

więcej podobnych podstron