25. Consider an infinitesimal section of the rod of length dx, a distance x from the left end, as shown in the
diagram below. It contains charge dq = λ dx and is a distance r from P . The magnitude of the field it
produces at P is given by
dE =
1
4πε
0
λ dx
r
2
.
The x component is
dE
x
=
−
1
4πε
0
λ dx
r
2
sin θ
and the y component is
dE
y
=
−
1
4πε
0
λ dx
r
2
cos θ .
x
y
dq
x
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
R
r
θ
P
•............
..................
..................
.................
..................
.................
...........................
......
.....................
.d
E
We use θ as the variable of integration and substitute r = R/ cos θ, x = R tan θ and dx = (R/ cos
2
θ) dθ.
The limits of integration are 0 and π/2 rad. Thus,
E
x
=
−
λ
4πε
0
R
π/2
0
sin θ dθ =
λ
4πε
0
R
cos θ
π/2
0
=
−
λ
4πε
0
R
and
E
y
=
−
λ
4πε
0
R
π/2
0
cos θ dθ =
−
λ
4πε
0
R
sin θ
π/2
0
=
−
λ
4πε
0
R
.
We notice that E
x
= E
y
no matter what the value of R. Thus,
E makes an angle of 45
◦
with the rod
for all values of R.