mercury II nitrate eros rm037

background image

MERCURY(II) NITRATE

1

Mercury(II) Nitrate

1

Hg(NO

3

)

2

·H

2

O

[7783-34-8]

H

2

HgN

2

O

7

(MW 342.63)

InChI = 1/Hg.2NO3.H2O/c;2*2-1(3)4;/h;;;1H2/q+2;2*-1;
InChIKey = KVICROHOONHSRH-UHFFFAOYAE

(oxymercuration;

4

9

amidomercuration;

12,15

cyclopropane

cleavage;

17,19

glycosylation

23

)

Alternate Name:

mercuric nitrate.

Physical Data:

mp 79

C; bp (dec); d 4.3 g cm

3

.

Solubility:

insol alcohol; very sol H

2

O (in dilute solutions forms

an insol basic salt); sol acetone, THF, DME, dioxane, NH

3

,

HNO

3

, and other dilute acids.

Form Supplied in:

transparent, hygroscopic crystals with slight

odor of HNO

3

.

Drying:

heating of the monohydrate to 55–60

C/10

2

mmHg.

2,3

Handling, Storage, and Precautions:

acute poison. Exposure to

all mercury compounds is to be strictly avoided. Releases toxic
Hg fumes when heated to decomposition. Protect from light.

Oxymercuration. The reactivity of Hg(NO

3

)

2

is similar to

that of other Hg

II

salts (acetate and trifluoroacetate)

1

so that this

reagent can be employed to achieve similar goals such as elec-
trophilic additions. The nitrate is often superior to its relatives
(due to its higher electrophilicity) and may exhibit some vari-
ations in reactivity.

4

Thus, for instance, conjugated dienes af-

ford products of both 1,4- and 1,2-addition (eq 1).

5,6

By contrast,

with Hg(OAc)

2

, only the 1,2-adduct is formed.

5

In the absence of

stronger nucleophiles (in a nonnucleophilic solvent), nitratomer-
curation has been observed.

7

In the presence of Cl

2

or Br

2

, the

HgX group in the original adduct is replaced by halogen.

7

ClHg

OMe

ClHg

1. Hg(NO

3

)

2

, MeOH

OMe

(1)

+

2:1

2. KCl

In the presence of Hydrogen Peroxide, alkenes are peroxymer-

curated

8

on reaction with Hg(NO

3

)

2

as a result of H

2

O

2

being a

stronger nucleophile than NO

3

.

Like other Hg

II

salts, mercury(II) nitrate effects intramolecu-

lar alkoxymercuration of unsaturated alcohols to produce oxy-
gen heterocycles (eq 2).

9

Similar to other electrophilic additions,

oxymercuration is a priori a reversible reaction. It has been shown
that selecting the method of quenching is crucial to minimize the
reversion. Thus, oxymercuration products with rigid, antiperipla-
nar arrangement of the C–HgX and C–O bonds (eq 2) imme-
diately revert back to the starting material upon treatment with
sources of hard halogen anion (NaCl, KBr, CuCl

2

, etc.). By con-

trast, quenching with soft reagents (e.g. CuCl) reliably affords the
stable chloromercurio compound. Excess of strong acids should
be avoided as H

+

catalyzes reversion.

9,10

HO

AcO

AcO

HgCl

O

O

HgNO

3

AcO

(2)

Hg(NO

3

)

2

CuCl

NaCl

In a close analogy to alkenic alcohols, unsaturated hydroperox-

ides react with Hg(NO

3

)

2

to give cyclic peroxides which can be

further elaborated.

8,11

Amidomercuration.

12

The mercuration of terminal or cyclic

alkenes with Hg(NO

3

)

2

in MeCN

12,13,14

affords amides via the

Ritter reaction (eq 3).

13

In contrast to the original, strong acid-

mediated reaction, this modification is less prone to rearrange-
ments as it proceeds via a mercuronium ion.

13,14

The reaction

works with mono- and disubstituted double bonds but fails with
trisubstituted alkenes.

14

Other Hg

II

salts, namely (AcO)

2

Hg and

(CF

3

CO

2

)

2

Hg, are not satisfactory,

13

apparently owing to their

lower electrophilicity.

1. Hg(NO

3

)

2

R

HN

R

COMe

+

(3)

MeCN

2. NaBH

4

Primary amides and TsNH

2

similarly add across alkenic double

bonds to give the corresponding tosylamides.

15

Asymmetric, in-

tramolecular amidomercuration employing chiral carbamates has
also been described (eq 4).

16

R*O

N
H

O

O

CCl

3

O

N

R*O

O

CCl

3

HgX

(4)

*

*

*

1 h

Hg(NO

3

)

2

MeCN

Cyclopropane Ring Opening.

17

19

Mercury(II) nitrate ap-

pears to be the reagent of choice to accomplish stereospecific cor-
ner opening

19

of cyclopropyl derivatives (eqs 5 and 6);

19,20

other

Hg

II

salts are less reactive.

19,21

The reaction is also regioselective:

the cleavage occurs between the most and the least substituted
carbon.

19

The resulting organomercurials can be transmetalated

by transition metals (Pd, Mo, Cu) to accomplish a variety of in-
teresting transformations.

19

(5)

OH

BrHg

1. Hg(NO

3

)

2

O

Hg

2+

2. KBr

Avoid Skin Contact with All Reagents

background image

2

MERCURY(II) NITRATE

(6)

O

O

1. Hg(NO

3

)

2

BrHg

Hg

2+

2. KBr

Glycosylation.

Thioglycosides can be utilized as glyco-

sylating agents in conjunction with anhydrous Hg(NO

3

)

2

(or

AgNO

3

).

22

Although the reaction normally affords mixtures of

α

- and β-glycosides,

22

neighboring group participation can render

it stereoselective (for discussion and examples, see Mercury(II)
Chloride–Cadmium Carbonate
).

23

Miscellaneous. β-Pinene undergoes a Ritter-type transforma-

tion on reaction with Hg(NO

3

)

2

/MeCN

24

to give the starting ma-

terial for the synthesis of aristoteline

25

and other indole alkaloids

(eq 7);

25

the reaction is not enantioselective and gives racemic

products.

24,25

Mercuration of enolizable ketones has little syn-

thetic value: thus, for instance, acetone has been found to produce
a mixture of nine compounds.

26

(7)

O

N

Hg(NO

3

)

2

MeCN

Related Reagents. Mercury(II) Acetate; Mercury(II) Trifluo-

roacetate; Mercury(II) Perchlorate.

1.

(a) Larock, R. C., Angew. Chem., Int. Ed. Engl. 1978, 17, 27. (b) Larock,
R. C., Tetrahedron 1982, 38, 1713. (c) Larock, R. C. Organomercury
Compounds in Organic Synthesis

; Springer: Berlin, 1985. (d) Larock,

R. C. Solvomercuration/Demercuration Reactions in Organic Synthesis;
Springer: Berlin, 1986.

2.

Sokolov, V. I.; Reutov, O. A., Izv. Akad. Nauk SSSR, Ser. Khim. 1968,
225.

3.

Fieser & Fieser 1982

, 10, 254.

4.

(a) Brown, H. C.; Kurek, J. T.; Rei, M. H.; Thompson, K. L., J. Org.
Chem.
1984

, 49, 2551. (b) Kartashov, V. R.; Sokolova, T. N.; Vasil’eva,

O. V.; Timofeev, I. V.; Grishin, Yu. K.; Bazhenok, D. V.; Zefirov, N. S.,
Zh. Org. Khim. 1990

, 26, 1800.

5.

Bloodworth, A. J.; Hutchings, M. G.; Sotowicz, A. J., J. Chem. Soc.,
Chem. Commun.
1976

, 578.

6.

Nikanorov, V. A.; Rozenberg, V. I.; Svitan’ko, Z. P.; Reutov, O. A., Dokl.
Akad. Nauk SSSR
1987

, 293, 634.

7.

(a) Bloodworth, A. J.; Cooper, P., J. Chem. Soc., Chem. Commun. 1986,
709. (b) Barluenga, J.; Martinez-Gallo, J. M.; Nájera, C.; Yus, M., J.
Chem. Soc., Chem. Commun.
1985

, 1422 and J. Chem. Res. (S) 1986,

274.

8.

(a) Bloodworth, A. J.; Loevitt, M. E., J. Chem. Soc., Chem. Commun.
1976, 94. (b) Bloodworth, A. J.; Griffin, I. M., J. Chem. Soc., Perkin
Trans. 1
1975

, 195. (c) Nixon, J. R.; Cudd, M. A.; Porter, N. A., J.

Org. Chem. 1978

, 43, 4048. (d) Porter, N. A.; Cudd, M. A.; Miller, R.

W.; McPhail, A. T., J. Am. Chem. Soc. 1980, 102, 414. (e) Porter, N.
A.; Zuraw, P. J., J. Org. Chem. 1984, 49, 1345. (f) Bloodworth, A. J.;
Courtneidge, J. L.; Curtis, R. J.; Spencer, M. D., J. Chem. Soc., Perkin
Trans. 1
1990

, 2951. (g) Bloodworth, A. J.; Spencer, M. D., Tetrahedron

Lett. 1990

, 31, 5513.

9.

Koˇcovský, P., Organometallics 1993, 12, 1969.

10.

For further discussion, see: Lilikarntakul, S.; Hirama, M.; Itô, S.,
Tetrahedron Lett. 1987

, 28, 1207.

11.

Bloodworth, A. J.; Curtis, R. J.; Mistry N., J. Chem. Soc., Chem.
Commun.
1989

, 954.

12.

(a) Fry, A. J.; Simon, J. A., J. Org. Chem. 1982, 47, 5032. (b) Barluenga,
J.; Jimenez, C.; Najera, C.; Yus, M., J. Chem. Soc., Perkin Trans. 1 1983,
591. (c) Barluenga, J.; Ferrera, L.; Najera, C.; Yus, M., Synthesis 1984,
831.

13.

Brown, H. C.; Kurek, J. T., J. Am. Chem. Soc. 1969, 91, 5647.

14.

(a) Chow, D.; Robson, J. H.; Wright, G. F., Can. J. Chem. 1965, 43, 312.
(b) Geger, J.; Vogel, D., J. Prakt. Chem. 1969, 311, 737. (c) Kozikowski,
A. P.; Scripko, J., Tetrahedron Lett. 1983, 24, 2051. (d) Henning, R.;
Urbach, H., Tetrahedron Lett. 1983, 24, 5343.

15.

Barluenga, J.; Jiménez, C.; Nájera, C.; Yus, M., J. Chem. Soc., Chem.
Commun.
1981

, 670 and 1178.

16.

Harding, K. E.; Hollingsworth, D. R.; Reibenspies, J., Tetrahedron Lett.
1989, 30, 4775.

17.

(a) Collum, D. B.; Mohamadi, F.; Hallock, J. S., J. Am. Chem. Soc. 1983,
105

, 6882. (b) Collum, D. B.; Still, W. C.; Mohamadi, F., J. Am. Chem.

Soc. 1986

, 108, 2094.

18.

(a) Bandaev, S. G.; Eshnazarov, Yu. Kh.; Nasyrov, I. M.; Mochalov, S.
S.; Shabarov, Yu. S., Zh. Org. Khim. 1988, 24, 733. (b) Bandaev, S. G.;
Eshnazarov, Yu. Kh.; Mochalov, S. S.; Shabarov, Yu. S.; Zefirov, N. S.,
Metalloorg. Khim. 1992

, 5, 690 (Chem. Abstr. 1992, 117, 251 458j).

19.

(a) Koˇcovský, P.; Šrogl, J., J. Org. Chem. 1992, 57, 4565. (b) Koˇcovský,
P.; Šrogl, J.; Gogoll, A.; Hanuš, V.; Polášek, M., J. Chem. Soc., Chem.
Commun.
1992

, 1086. (c) Šrogl, J.; Koˇcovský, P., Tetrahedron Lett. 1992,

33

, 5991. (d) Koˇcovský, P.; Šrogl, J.; Pour, M.; Gogoll, A., J. Am. Chem.

Soc. 1994

, 116, 186. (e) Koˇcovský, P., Grech, J. M.; Mitchell, W. L., J.

Org. Chem. 1995

, 60, 482.

20.

Langbein, G.; Siemann, H.-J.; Gruner, I.; Müller, C., Tetrahedron 1986,
42

, 937.

21.

Similar reactivity has been observed for isoelectronic Tl

III

: Koˇcovsky,

P.; Pour, M.; Gogoll, A.; Hanuš, V.; Smrˇcina, M., J. Am. Chem. Soc.
1990, 112, 6735.

22.

Hanessian, S.; Bacquet, C.; Lehong, N., Carbohydr. Res. 1980, 80, C17.

23.

(a) Wiesner, K.; Tsai, T. Y. R.; Jin, H., Helv. Chim. Acta 1985, 68, 300.
(b) Wiesner, K.; Tsai, T. Y. R., Pure Appl. Chem. 1986, 58, 799.

24.

(a) Delpech, B.; Khuong-Huu, Q., Tetrahedron Lett. 1973, 1533.
(b) Delpech, B.; Khuong-Huu, Q., J. Org. Chem. 1978, 43, 4898.
(c) Rappoport, Z.; Winstein, S.; Young, W. G., J. Am. Chem. Soc. 1972,
94

, 2320.

25.

(a) Mirand, C.; Massiot, G.; Lévy, J., J. Org. Chem. 1982, 47, 4169.
(b) Stevens, R. V.; Kenney, P. M., J. Chem. Soc., Chem. Commun. 1983,
384.

26.

Johnson, F. A.; Perry, W. D., Organometallics 1989, 8, 2646.

Pavel Koˇcovský

University of Leicester, Leicester, UK

A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
mercury II chloride eros rm031
mercury II sulfate eros rm044
mercury II chloride silver I nitrite eros rm033
copper II chloride eros rc214
palladium II chloride eros rp007
lead II acetate eros rl004
copper II bromide eros rc206
palladium II acetate eros rp001
iron II chloride eros ri055
potassium permanganate copper II sulfate eros rp245
copper II chloride eros rc214
vanadium II chloride eros rv002

więcej podobnych podstron