MERCURY(II) CHLORIDE
1
Mercury(II) Chloride
1
HgCl
2
[7487-94-7]
Cl
2
Hg
(MW 271.49)
InChI = 1/2ClH.Hg/h2*1H;/q;;+2/p-2/f2Cl.Hg/h2*1h;/q2*-1;m
InChIKey = LWJROJCJINYWOX-ZZJRNXLTCY
(electrophilic mercuration of multiple bonds;
1
cleavage of
vinyl sulfides and thioacetals;
17
transmetalation;
1
preparation of
amalgams
30
–
33
)
Alternate Name:
mercuric chloride.
Physical Data:
mp 277
◦
C; bp 302
◦
C; d 5.440 g cm
−
3
.
Solubility:
sol H
2
O, alcohol, ether, glycerol, acetic acid, acetone,
ethyl acetate; slightly sol benzene, pyridine, CS
2
.
Form Supplied in:
white rhombic crystals.
Handling, Storage, and Precautions:
violent poison; may be fa-
tal if swallowed in 0.2–0.4 g doses. Exposure to any mercury
reagent is to be avoided. Teratogen; mutagen; irritant. Reacts
violently with K, Na. Releases toxic Hg vapor when heated to
decomposition. Handle in a fume hood.
Electrophilic Attack on Multiple Bonds. Although less elec-
trophilic than other Hg
II
reagents, HgCl
2
has been successfully
employed in electrophilic cyclization of various dienes
1,2
(see
also Mercury(II) Acetate) (eq 1);
3
an allylic hydroxyl controls
the diastereoselectivity of the latter reaction.
3
Aromatization of
certain conjugated systems has also been observed on treatment
with HgCl
2
.
4
Similar to Tl
I
salts,
5
HgCl
2
promotes iodocycliza-
tion of alkenic alcohols.
6
In the presence of a halogen (Cl
2
or Br
2
),
HgCl
2
facilitates halogenation of a C=C bond.
2
HO
OH
OH
OH
(1)
1. HgCl
2
, t-BuOH
2. NaBH
4
+
55%
Intramolecular aminomercuration of δ,ε-unsaturated amines
has also been accomplished with HgCl
2
7,8
(eq 2).
8
The stere-
ochemistry of the reaction is solvent dependent
8
and may be
reversible.
9
(2)
NHMe
Ph
Ph
N
Me
Ph
+
N
Me
1. HgCl
2
THF
THF, H
2
O
10:90 36%
87:13 64%
2. NaBH
4
Terminal alkynes (RC≡CH) add MeOH in the presence of Tri-
ethylamine and a catalytic amount of HgCl
2
to give enol ethers
of the corresponding ketones (RC(OMe)=CH
2
).
10
This reaction
parallels the well-known HgSO
4
-catalyzed hydration of alkynes,
producing ketones. 3-Alken-1-ynes undergo catalytic aminomer-
curation in the presence of HgCl
2
at 70
◦
C over 3–6 h to produce
enamines.
11
By contrast, propargylic alcohols (HC≡CCH
2
OH) un-
dergo oxidative aminomercuration to afford bis-aminated alde-
hydes, e.g. (Z)-PhNHCH=C(NHPh)CH=O.
12
Propargyl amines
(HC≡C–CH
2
NR
2
) add HgCl
2
in aqueous HCl to give ClCH=
C(HgCl)–CH
2
NR
2
.
13
Treatment of silyl enol ethers of ε-alkynic ketones or aldehydes
with HgCl
2
(1.1 equiv) and Hexamethyldisilazane (0.2 equiv; acid
scavenger) induces cyclization (eq 3).
14
HgCl
2
(TMS)
2
NH
CH
2
Cl
2
OTMS
O HgCl
(3)
30 °C
Enol ethers derived from carbohydrates can be readily con-
verted into carbocycles via a HgCl
2
-mediated reaction which in-
volves an electrophilic attack at the C=C bond to generate the
corresponding ketoaldehyde, which cyclizes spontaneously via
an intramolecular aldol condensation (eq 4).
15
O
OMe
OBn
AcO
OBn
O
OBn
AcO
OBn
(4)
HgCl
2
Me
2
CO–H
2
O (1:2)
reflux
Aldehydes RCH
2
CH=O (R=Me, Et) afford α,α-bischloro-
mercurated products on treatment with excess HgCl
2
.
16
Hydrolysis of Vinyl Sulfides and Thioacetals to Carbonyl
Compounds.
17
Whereas the hydrolysis of vinyl sulfides to ke-
tones works well with a mixture of HgCl
2
and an additive (HgO,
CaCO
3
, or CdCO
3
), the reaction leading to aldehydes often gives
unsatisfactory results. In this case, yields can be dramatically im-
proved if HCl is first added across the double bond of the vinyl
sulfide (RCH=CHSPh) to generate R–CH
2
CH(Cl)SPh. The lat-
ter intermediate is then quantitatively hydrolyzed by HgCl
2
and
water to the aldehyde RCH
2
CH=O.
18
Thioacetals
19,20
and O,S-acetals
21
are hydrolyzed by means
of HgCl
2
to the corresponding carbonyl compounds; addition of
Calcium Carbonate usually improves the yields (see also Mer-
cury(II) Chloride–Cadmium Carbonate). This method, involving
spontaneous spirocyclization of the resulting keto group, has been
employed in the synthesis of talaromycin B (eq 5).
20
O
O
O
O
S
S
OH
O
O
O
O
OH
(5)
1. HgCl
2
, MeCN
2. Me
2
C(OMe)
2
Talaromycin B
65%
Avoid Skin Contact with All Reagents
2
MERCURY(II) CHLORIDE
Methylthiomethyl (MTM) ethers can be converted into 2-me-
thoxyethoxy (MEM), methoxymethyl (MOM), or ethoxymethyl
(EOM) ethers on reaction with HgCl
2
and MeOCH
2
CH
2
OH,
MeOH, or EtOH, respectively, in 70–80% yields.
22
Addition of HgCl
2
to boronate ate complexes derived from O,S-
acetals induces B → C migration. This sequence has been used to
obtain optically pure aldehydes (eq 6).
23
Selenoacetals are simi-
larly hydrolyzed by HgCl
2
/CaCO
3
in acetonitrile.
24
(6)
B
O
O
B
O
O
OMe
PhS
CHO
1. HgCl
2
PhS(MeO)CHLi
2. H
2
O
2
Preparation of Organomercurials by Exchange Reac-
tions.
Among the methods developed for the synthesis of
organomercurials is the transmetalation of other organometallics
with HgCl
2
(e.g. ArLi → ArHgCl or RMgCl → RHgCl),
1,25
and reactions of aromatic diazonium salts with HgCl
2
and
copper (ArN
2
+
Cl
−
→
ArHgCl).
26
The yields in the lat-
ter methods do not exceed 50%.
25
Sodium p-toluenesulfinate
is also converted into the corresponding organomercurial
(MeC
6
H
4
HgCl) on reaction with HgCl
2
.
27
Vinylmercury chlo-
rides (RCH=CH–HgCl) can be prepared by transmetalation
of the corresponding vinylalanes, which, in turn, are available
from terminal alkynes; the transmetalation occurs with >98%
retention of configuration.
28
A stable metalated cubane deriva-
tive has been obtained by lithiation of the diisopropylamide
of cubanecarboxylic acid with Lithium 2,2,6,6-Tetramethyl-
piperidide followed by transmetalation with HgCl
2
.
29
Reversed
transmetalation (cubane–HgCl → cubane–Li) has also been des-
cribed.
29
Amalgams.
Mercury(II) chloride has been extensively uti-
lized for the preparation of a variety of amalgams (e.g. Zn,
30
Mg,
31
and Al)
32,33
to be employed in reductive processes such as Clem-
mensen reduction (with Zn)
30
or pinacol coupling (Mg),
31
and to
prepare, for example, aluminum ethoxide
32
and t-butoxide.
33
Miscellaneous.
Penam derivatives result from the HgCl
2
-
promoted ring closure of azetidin-2-one.
34
Mercury(II) chloride
seems to be a reagent of choice for isolation of histidine from a
mixture of amino acids in the form of an insoluble complex.
35
In
combination with iodine, HgCl
2
facilitates α-iodination of eno-
lizable ketones and aldehydes.
36
Related Reagents. Mercury(II) Chloride–Cadmium Carbo-
nate; Mercury(II) Chloride–Silver(I) Nitrite.
1.
(a) Larock, R. C., Angew. Chem., Int. Ed. Engl. 1978, 17, 27. (b) Larock,
R. C., Tetrahedron 1982, 38, 1713. (c) Larock, R. C. Organomercury
Compounds in Organic Synthesis
; Springer: Berlin, 1985. (d) Larock,
R. C. Solvomercuration/Demercuration Reactions in Organic Synthesis;
Springer: Berlin, 1986.
2.
(a) Vardhan, H. B.; Bach, R. D., J. Org. Chem. 1992, 57, 4948.
(b) Barluenga, J.; Martínez-Gallo, J. M.; Nájera, C.; Yus, M., J. Chem.
Soc., Chem. Commun. 1985
, 1422.
3.
(a) Henbest, H. B.; Nicholls, B., J. Chem. Soc 1959, 227. (b) Henbest,
H. B.; McElkinney, R. S., J. Chem. Soc 1959, 1834. (c) Matsuki, Y.;
Kodama, M.; Itô, S., Tetrahedron Lett. 1979, 2901.
4.
Rozenberg, V. I.; Gavrilova, G. V.; Ginzburg, B. I.; Nikanorov, V. A.;
Reutov, O. A., Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 1916; Bull. Acad.
Sci. USSR, Div. Chem. Sci. 1982
, 31, 1707.
5.
Koˇcovský, P.; Pour, M., J. Org. Chem. 1990, 55, 5580.
6.
Forsyth, C. J.; Clardy, J., J. Am. Chem. Soc. 1990, 112, 3497.
7.
Périé, J. J.; Laval, J. P.; Roussel, J.; Lattes, A., Tetrahedron Lett. 1971,
4399.
8.
Tokuda, M.; Yamada, Y.; Suginome, H., Chem. Lett. 1988, 1289.
9.
Barluenga, J.; Perez-Prieto, J.; Bayon, A. M., Tetrahedron 1984, 40,
1199.
10.
Barluenga, J.; Aznar, F.; Bayod, M., Synthesis 1988, 144.
11.
(a) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M. P., J. Chem. Soc.,
Chem. Commun. 1985
, 1375. Similar reaction occurs with (AcO)
2
Hg:
(b) Davtyan, S. Zh.; Chobanyan, Zh. A.; Badanyan, Sh. O., Arm. Khim.
Zh. 1983
, 36, 508 (Chem. Abstr. 1984, 100, 67 447c). (c) Barluenga,
J.; Aznar, F.; Valdez, C.; Cabal, M. P., J. Org. Chem. 1991, 56, 6166.
(d) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M. P., Synthesis 1986,
960.
12.
Barluenga, J.; Aznar, F.; Liz, R., J. Chem. Soc., Chem. Commun. 1986,
1180.
13.
Larock, R. C.; Burns, L. D.; Varaprath, S.; Russell, C. E.; Richardson, J.
W., Jr.; Janakiraman, M. N.; Jacobson, R. A., Organometallics 1987, 6,
1780.
14.
(a) Drouin, J.; Bonaventura, M.-A.; Coia, J.-M., J. Am. Chem. Soc. 1985,
107
, 1726. (b) Conia, J. M.; LePerchec, P., Synthesis 1975, 1. (c) Forsyth,
C. J.; Clardy, J., J. Am. Chem. Soc. 1990, 112, 3497.
15.
Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S., J. Chem. Soc., Chem.
Commun. 1989
, 436.
16.
Korpar-Colig, B.; Popovic, Z.; Sikirica, M., Croat. Chem. Acta 1984, 57,
689 (Chem. Abstr. 1985, 102, 220 968m).
17.
Stachel, D. P. N., Chem. Soc. Rev. 1977, 6, 345.
18.
Mura, A. J., Jr.; Majetich, G.; Grieco, P. A.; Cohen, T., Tetrahedron Lett.
1975, 4437.
19.
Seebach, D.; Beck, A. K., Org. Synth., Coll. Vol. 1988, 6, 316.
20.
(a) Schreiber, S. L.; Sommer, T. J., Tetrahedron Lett. 1983, 24, 4781.
(b) Kozikowski, A. P.; Scripko, J. G., J. Am. Chem. Soc. 1984, 106,
353.
21.
Jensen, J. L.; Maynard, D. F.; Shaw, G. R.; Smith, T. W., Jr., J. Org.
Chem. 1992
, 57, 1982.
22.
Chowdhury, P. K.; Sharma, D. N.; Sharma, R. R., Chem. Ind. (London)
1984, 803.
23.
(a) Brown, H. C.; Imai, T., J. Am. Chem. Soc. 1983, 105, 6285. (b) Brown,
H. C.; Imai, T.; Desai, M. C.; Singaram, B., J. Am. Chem. Soc. 1985, 107,
4980.
24.
Burton, A.; Hevesi, L.; Dumont, W.; Cravador, A.; Krief, A., Synthesis
1979, 877.
25.
(a) Eaton, P. E.; Martin, R. M., J. Org. Chem. 1988, 53, 2728. (b) Wells,
A. P.; Kitching, W., J. Chem. Soc., Perkin Trans. 1 1995, 527.
26.
Nesmeyanov, A. N., Org. Synth., Coll. Vol. 1943, 2, 432.
27.
Whitmore, F. C.; Hamilton, F. H.; Thurman, N., Org. Synth., Coll. Vol.
1941, 1, 519.
28.
Negishi, E.; Jadhav, K. P.; Daotien, N., Tetrahedron Lett. 1982, 23,
2085.
29.
(a) Eaton, P.; Castaldi, G. U. S. Patent Appl. 613 708 (Chem. Abstr. 1986,
105
, 172 705n)(b) Eaton, P. E.; Cunkle, G. T.; Marchioro, G.; Martin,
R. M., J. Am. Chem. Soc. 1987, 109, 948.
A list of General Abbreviations appears on the front Endpapers
MERCURY(II) CHLORIDE
3
30.
(a) Martin, E. L., Org. Synth., Coll. Vol. 1943, 2, 499. (b) Schwarz, R.;
Hering, H., Org. Synth., Coll. Vol. 1963, 4, 203. (c) Shriner, R. L.; Berger,
A., Org. Synth., Coll. Vol. 1955, 3, 786.
31.
Adams, R.; Adams, E. W., Org. Synth., Coll. Vol. 1941, 1, 459.
32.
Chalmers, W., Org. Synth., Coll. Vol. 1943, 2, 598.
33.
Wayne, W.; Adkins, H., Org. Synth., Coll. Vol. 1955, 3, 367.
34.
Sheehan, J. C.; Piper, J. V., J. Org. Chem. 1973, 38, 3492.
35.
Foster, G. L.; Shemin, D., Org. Synth., Coll. Vol. 1943, 2, 330.
36.
Barluenga, J.; Martinez-Gallo, J. M.; Najera, C.; Yus, M., Synthesis 1986,
678.
Pavel Koˇcovský
University of Leicester, Leicester, UK
Avoid Skin Contact with All Reagents