mercury II chloride eros rm031

background image

MERCURY(II) CHLORIDE

1

Mercury(II) Chloride

1

HgCl

2

[7487-94-7]

Cl

2

Hg

(MW 271.49)

InChI = 1/2ClH.Hg/h2*1H;/q;;+2/p-2/f2Cl.Hg/h2*1h;/q2*-1;m
InChIKey = LWJROJCJINYWOX-ZZJRNXLTCY

(electrophilic mercuration of multiple bonds;

1

cleavage of

vinyl sulfides and thioacetals;

17

transmetalation;

1

preparation of

amalgams

30

33

)

Alternate Name:

mercuric chloride.

Physical Data:

mp 277

C; bp 302

C; d 5.440 g cm

3

.

Solubility:

sol H

2

O, alcohol, ether, glycerol, acetic acid, acetone,

ethyl acetate; slightly sol benzene, pyridine, CS

2

.

Form Supplied in:

white rhombic crystals.

Handling, Storage, and Precautions:

violent poison; may be fa-

tal if swallowed in 0.2–0.4 g doses. Exposure to any mercury
reagent is to be avoided. Teratogen; mutagen; irritant. Reacts
violently with K, Na. Releases toxic Hg vapor when heated to
decomposition. Handle in a fume hood.

Electrophilic Attack on Multiple Bonds. Although less elec-

trophilic than other Hg

II

reagents, HgCl

2

has been successfully

employed in electrophilic cyclization of various dienes

1,2

(see

also Mercury(II) Acetate) (eq 1);

3

an allylic hydroxyl controls

the diastereoselectivity of the latter reaction.

3

Aromatization of

certain conjugated systems has also been observed on treatment
with HgCl

2

.

4

Similar to Tl

I

salts,

5

HgCl

2

promotes iodocycliza-

tion of alkenic alcohols.

6

In the presence of a halogen (Cl

2

or Br

2

),

HgCl

2

facilitates halogenation of a C=C bond.

2

HO

OH

OH

OH

(1)

1. HgCl

2

, t-BuOH

2. NaBH

4

+

55%

Intramolecular aminomercuration of δ,ε-unsaturated amines

has also been accomplished with HgCl

2

7,8

(eq 2).

8

The stere-

ochemistry of the reaction is solvent dependent

8

and may be

reversible.

9

(2)

NHMe

Ph

Ph

N
Me

Ph

+

N
Me

1. HgCl

2

THF
THF, H

2

O

10:90 36%
87:13 64%

2. NaBH

4

Terminal alkynes (RC≡CH) add MeOH in the presence of Tri-

ethylamine and a catalytic amount of HgCl

2

to give enol ethers

of the corresponding ketones (RC(OMe)=CH

2

).

10

This reaction

parallels the well-known HgSO

4

-catalyzed hydration of alkynes,

producing ketones. 3-Alken-1-ynes undergo catalytic aminomer-
curation in the presence of HgCl

2

at 70

C over 3–6 h to produce

enamines.

11

By contrast, propargylic alcohols (HC≡CCH

2

OH) un-

dergo oxidative aminomercuration to afford bis-aminated alde-
hydes, e.g. (Z)-PhNHCH=C(NHPh)CH=O.

12

Propargyl amines

(HC≡C–CH

2

NR

2

) add HgCl

2

in aqueous HCl to give ClCH=

C(HgCl)–CH

2

NR

2

.

13

Treatment of silyl enol ethers of ε-alkynic ketones or aldehydes

with HgCl

2

(1.1 equiv) and Hexamethyldisilazane (0.2 equiv; acid

scavenger) induces cyclization (eq 3).

14

HgCl

2

(TMS)

2

NH

CH

2

Cl

2

OTMS

O HgCl

(3)

30 °C

Enol ethers derived from carbohydrates can be readily con-

verted into carbocycles via a HgCl

2

-mediated reaction which in-

volves an electrophilic attack at the C=C bond to generate the
corresponding ketoaldehyde, which cyclizes spontaneously via
an intramolecular aldol condensation (eq 4).

15

O

OMe

OBn

AcO

OBn

O

OBn

AcO

OBn

(4)

HgCl

2

Me

2

CO–H

2

O (1:2)

reflux

Aldehydes RCH

2

CH=O (R=Me, Et) afford α,α-bischloro-

mercurated products on treatment with excess HgCl

2

.

16

Hydrolysis of Vinyl Sulfides and Thioacetals to Carbonyl

Compounds.

17

Whereas the hydrolysis of vinyl sulfides to ke-

tones works well with a mixture of HgCl

2

and an additive (HgO,

CaCO

3

, or CdCO

3

), the reaction leading to aldehydes often gives

unsatisfactory results. In this case, yields can be dramatically im-
proved if HCl is first added across the double bond of the vinyl
sulfide (RCH=CHSPh) to generate R–CH

2

CH(Cl)SPh. The lat-

ter intermediate is then quantitatively hydrolyzed by HgCl

2

and

water to the aldehyde RCH

2

CH=O.

18

Thioacetals

19,20

and O,S-acetals

21

are hydrolyzed by means

of HgCl

2

to the corresponding carbonyl compounds; addition of

Calcium Carbonate usually improves the yields (see also Mer-
cury(II) Chloride–Cadmium Carbonate
). This method, involving
spontaneous spirocyclization of the resulting keto group, has been
employed in the synthesis of talaromycin B (eq 5).

20

O

O

O

O

S

S

OH

O

O

O

O

OH

(5)

1. HgCl

2

, MeCN

2. Me

2

C(OMe)

2

Talaromycin B

65%

Avoid Skin Contact with All Reagents

background image

2

MERCURY(II) CHLORIDE

Methylthiomethyl (MTM) ethers can be converted into 2-me-

thoxyethoxy (MEM), methoxymethyl (MOM), or ethoxymethyl
(EOM) ethers on reaction with HgCl

2

and MeOCH

2

CH

2

OH,

MeOH, or EtOH, respectively, in 70–80% yields.

22

Addition of HgCl

2

to boronate ate complexes derived from O,S-

acetals induces B → C migration. This sequence has been used to
obtain optically pure aldehydes (eq 6).

23

Selenoacetals are simi-

larly hydrolyzed by HgCl

2

/CaCO

3

in acetonitrile.

24

(6)

B

O

O

B

O

O

OMe

PhS

CHO

1. HgCl

2

PhS(MeO)CHLi

2. H

2

O

2

Preparation of Organomercurials by Exchange Reac-

tions.

Among the methods developed for the synthesis of

organomercurials is the transmetalation of other organometallics
with HgCl

2

(e.g. ArLi → ArHgCl or RMgCl → RHgCl),

1,25

and reactions of aromatic diazonium salts with HgCl

2

and

copper (ArN

2

+

Cl

ArHgCl).

26

The yields in the lat-

ter methods do not exceed 50%.

25

Sodium p-toluenesulfinate

is also converted into the corresponding organomercurial
(MeC

6

H

4

HgCl) on reaction with HgCl

2

.

27

Vinylmercury chlo-

rides (RCH=CH–HgCl) can be prepared by transmetalation
of the corresponding vinylalanes, which, in turn, are available
from terminal alkynes; the transmetalation occurs with >98%
retention of configuration.

28

A stable metalated cubane deriva-

tive has been obtained by lithiation of the diisopropylamide
of cubanecarboxylic acid with Lithium 2,2,6,6-Tetramethyl-
piperidide
followed by transmetalation with HgCl

2

.

29

Reversed

transmetalation (cubane–HgCl → cubane–Li) has also been des-
cribed.

29

Amalgams.

Mercury(II) chloride has been extensively uti-

lized for the preparation of a variety of amalgams (e.g. Zn,

30

Mg,

31

and Al)

32,33

to be employed in reductive processes such as Clem-

mensen reduction (with Zn)

30

or pinacol coupling (Mg),

31

and to

prepare, for example, aluminum ethoxide

32

and t-butoxide.

33

Miscellaneous.

Penam derivatives result from the HgCl

2

-

promoted ring closure of azetidin-2-one.

34

Mercury(II) chloride

seems to be a reagent of choice for isolation of histidine from a
mixture of amino acids in the form of an insoluble complex.

35

In

combination with iodine, HgCl

2

facilitates α-iodination of eno-

lizable ketones and aldehydes.

36

Related Reagents. Mercury(II) Chloride–Cadmium Carbo-

nate; Mercury(II) Chloride–Silver(I) Nitrite.

1.

(a) Larock, R. C., Angew. Chem., Int. Ed. Engl. 1978, 17, 27. (b) Larock,
R. C., Tetrahedron 1982, 38, 1713. (c) Larock, R. C. Organomercury
Compounds in Organic Synthesis

; Springer: Berlin, 1985. (d) Larock,

R. C. Solvomercuration/Demercuration Reactions in Organic Synthesis;
Springer: Berlin, 1986.

2.

(a) Vardhan, H. B.; Bach, R. D., J. Org. Chem. 1992, 57, 4948.
(b) Barluenga, J.; Martínez-Gallo, J. M.; Nájera, C.; Yus, M., J. Chem.
Soc., Chem. Commun.
1985

, 1422.

3.

(a) Henbest, H. B.; Nicholls, B., J. Chem. Soc 1959, 227. (b) Henbest,
H. B.; McElkinney, R. S., J. Chem. Soc 1959, 1834. (c) Matsuki, Y.;
Kodama, M.; Itô, S., Tetrahedron Lett. 1979, 2901.

4.

Rozenberg, V. I.; Gavrilova, G. V.; Ginzburg, B. I.; Nikanorov, V. A.;
Reutov, O. A., Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 1916; Bull. Acad.
Sci. USSR, Div. Chem. Sci.
1982

, 31, 1707.

5.

Koˇcovský, P.; Pour, M., J. Org. Chem. 1990, 55, 5580.

6.

Forsyth, C. J.; Clardy, J., J. Am. Chem. Soc. 1990, 112, 3497.

7.

Périé, J. J.; Laval, J. P.; Roussel, J.; Lattes, A., Tetrahedron Lett. 1971,
4399.

8.

Tokuda, M.; Yamada, Y.; Suginome, H., Chem. Lett. 1988, 1289.

9.

Barluenga, J.; Perez-Prieto, J.; Bayon, A. M., Tetrahedron 1984, 40,
1199.

10.

Barluenga, J.; Aznar, F.; Bayod, M., Synthesis 1988, 144.

11.

(a) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M. P., J. Chem. Soc.,
Chem. Commun.
1985

, 1375. Similar reaction occurs with (AcO)

2

Hg:

(b) Davtyan, S. Zh.; Chobanyan, Zh. A.; Badanyan, Sh. O., Arm. Khim.
Zh.
1983

, 36, 508 (Chem. Abstr. 1984, 100, 67 447c). (c) Barluenga,

J.; Aznar, F.; Valdez, C.; Cabal, M. P., J. Org. Chem. 1991, 56, 6166.
(d) Barluenga, J.; Aznar, F.; Liz, R.; Cabal, M. P., Synthesis 1986,
960.

12.

Barluenga, J.; Aznar, F.; Liz, R., J. Chem. Soc., Chem. Commun. 1986,
1180.

13.

Larock, R. C.; Burns, L. D.; Varaprath, S.; Russell, C. E.; Richardson, J.
W., Jr.; Janakiraman, M. N.; Jacobson, R. A., Organometallics 1987, 6,
1780.

14.

(a) Drouin, J.; Bonaventura, M.-A.; Coia, J.-M., J. Am. Chem. Soc. 1985,
107

, 1726. (b) Conia, J. M.; LePerchec, P., Synthesis 1975, 1. (c) Forsyth,

C. J.; Clardy, J., J. Am. Chem. Soc. 1990, 112, 3497.

15.

Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S., J. Chem. Soc., Chem.
Commun.
1989

, 436.

16.

Korpar-Colig, B.; Popovic, Z.; Sikirica, M., Croat. Chem. Acta 1984, 57,
689 (Chem. Abstr. 1985, 102, 220 968m).

17.

Stachel, D. P. N., Chem. Soc. Rev. 1977, 6, 345.

18.

Mura, A. J., Jr.; Majetich, G.; Grieco, P. A.; Cohen, T., Tetrahedron Lett.
1975, 4437.

19.

Seebach, D.; Beck, A. K., Org. Synth., Coll. Vol. 1988, 6, 316.

20.

(a) Schreiber, S. L.; Sommer, T. J., Tetrahedron Lett. 1983, 24, 4781.
(b) Kozikowski, A. P.; Scripko, J. G., J. Am. Chem. Soc. 1984, 106,
353.

21.

Jensen, J. L.; Maynard, D. F.; Shaw, G. R.; Smith, T. W., Jr., J. Org.
Chem.
1992

, 57, 1982.

22.

Chowdhury, P. K.; Sharma, D. N.; Sharma, R. R., Chem. Ind. (London)
1984, 803.

23.

(a) Brown, H. C.; Imai, T., J. Am. Chem. Soc. 1983, 105, 6285. (b) Brown,
H. C.; Imai, T.; Desai, M. C.; Singaram, B., J. Am. Chem. Soc. 1985, 107,
4980.

24.

Burton, A.; Hevesi, L.; Dumont, W.; Cravador, A.; Krief, A., Synthesis
1979, 877.

25.

(a) Eaton, P. E.; Martin, R. M., J. Org. Chem. 1988, 53, 2728. (b) Wells,
A. P.; Kitching, W., J. Chem. Soc., Perkin Trans. 1 1995, 527.

26.

Nesmeyanov, A. N., Org. Synth., Coll. Vol. 1943, 2, 432.

27.

Whitmore, F. C.; Hamilton, F. H.; Thurman, N., Org. Synth., Coll. Vol.
1941, 1, 519.

28.

Negishi, E.; Jadhav, K. P.; Daotien, N., Tetrahedron Lett. 1982, 23,
2085.

29.

(a) Eaton, P.; Castaldi, G. U. S. Patent Appl. 613 708 (Chem. Abstr. 1986,
105

, 172 705n)(b) Eaton, P. E.; Cunkle, G. T.; Marchioro, G.; Martin,

R. M., J. Am. Chem. Soc. 1987, 109, 948.

A list of General Abbreviations appears on the front Endpapers

background image

MERCURY(II) CHLORIDE

3

30.

(a) Martin, E. L., Org. Synth., Coll. Vol. 1943, 2, 499. (b) Schwarz, R.;
Hering, H., Org. Synth., Coll. Vol. 1963, 4, 203. (c) Shriner, R. L.; Berger,
A., Org. Synth., Coll. Vol. 1955, 3, 786.

31.

Adams, R.; Adams, E. W., Org. Synth., Coll. Vol. 1941, 1, 459.

32.

Chalmers, W., Org. Synth., Coll. Vol. 1943, 2, 598.

33.

Wayne, W.; Adkins, H., Org. Synth., Coll. Vol. 1955, 3, 367.

34.

Sheehan, J. C.; Piper, J. V., J. Org. Chem. 1973, 38, 3492.

35.

Foster, G. L.; Shemin, D., Org. Synth., Coll. Vol. 1943, 2, 330.

36.

Barluenga, J.; Martinez-Gallo, J. M.; Najera, C.; Yus, M., Synthesis 1986,
678.

Pavel Koˇcovský

University of Leicester, Leicester, UK

Avoid Skin Contact with All Reagents


Wyszukiwarka

Podobne podstrony:
mercury II chloride silver I nitrite eros rm033
copper II chloride eros rc214
palladium II chloride eros rp007
mercury II nitrate eros rm037
mercury II sulfate eros rm044
iron II chloride eros ri055
copper II chloride eros rc214
vanadium II chloride eros rv002
benzyl chloride eros rb050
oxalyl chloride eros ro015
lithium chloride eros rl076
phenylzinc chloride eros rp148
iron III chloride eros ri054

więcej podobnych podstron