PHENYLZINC CHLORIDE
1
Phenylzinc Chloride
PhZnCl
[28557-00-8]
C
6
H
5
ClZn
(MW 177.95)
InChI = 1/C6H5.ClH.Zn/c1-2-4-6-5-3-1;;/h1-5H;1H;/q;;+1/p-
1/fC6H5.Cl.Zn/h;1h;/q;-1;m/rC6H5ClZn/c7-8-6-4-2-1-
3-5-6/h1-5H
InChIKey = VFHDCDDYMMQCBF-PIZJLVLPCC
(phenyl coupling reagent in the presence of palladium(0) or
copper(I) complexes)
Solubility:
sol ether, THF; reacts rapidly with H
2
O and protic
solvents.
Preparative Methods:
usually prepared by transmetalation of
Phenylmagnesium Bromide with Zinc Chloride.
1
Related
arylzinc halides can either be prepared by the direct inser-
tion of zinc,
2
by a transmetalation from the corresponding
aryllithium,
3
or electrochemically.
4
Diarylzincs have been gen-
erated under Barbier conditions.
5
Handling, Storage, and Precautions:
reacts with oxygen; should
be handled and stored under an inert atmosphere in the absence
of moisture.
Palladium- and Nickel-catalyzed Reactions.
Although
arylzinc halides display a low reactivity toward many organic
electrophiles, the use of late transition metal (Ni, Pd) complexes
allows cross-coupling reactions to be performed with a variety of
electrophiles. In pioneering work by Negishi,
1
,
6
the coupling of
phenylzinc chloride with various aromatic, allenic, and alkenyl
7
iodides or bromides in the presence of 1–5 mol % of a Pd
0
catalyst
provides a unique preparation of polyfunctionalized unsaturated
molecules (eqs 1 and 2).
8
,
9
Cross coupling with alkenyl triflates
is also possible (eq 3).
10
Cl
Cl
H
CO
2
Et
H
Ph
Cl
H
CO
2
Et
H
PhZnCl
1 mol % PdCl
2
L
2
(1)
86%
Et
Ph
TMS
Br
Et
Ph
TMS
Ph
PhZnCl, THF
cat Pd(PPh
3
)
4
(2)
95%
TfO
O
OMe
Ph
O
OMe
PhZnCl, THF
cat Pd(PPh
3
)
4
(3)
97%
The Pd-catalyzed reaction of phenylzinc chloride with acid
chlorides gives an efficient preparation of various types of ke-
tones (eq 4).
11
The Ni-catalyzed coupling of α-bromo nitriles and
esters furnishes the arylated carbonyl derivatives in satisfactory
yields.
12
The Pd-catalyzed substitution with allylic acetates pro-
ceeds at the more hindered position of the allylic system, whereas
the substitution reaction with stabilized nucleophiles occurs at
the less hindered position (eq 5).
13
Also, contrary to the reac-
tion with stabilized nucleophiles, the substitution with phenyl-
zinc chloride always proceeds with formal inversion (eq 6).
14
1-Vinylcyclopropyl tosylate reacts with high regioselectivity with
phenylzinc chloride.
15
An intramolecular carbopalladation of
alkynes triggered by anoxidative addition of a phenylpalladium
complex to aromatic iodides provides an interesting synthesis of
various cyclic systems (eq 7).
16
Finally, diphenylzinc undergoes a
1,4-addition to unsaturated aldehydes and ketones in the presence
of a nickel catalyst.
5
PhZnCl, THF
cat Pd(PPh
3
)
4
(4)
Cl
O
Ph
O
92%
PhZnCl, THF
cat Pd(PPh
3
)
4
(5)
OAc
Pr
Ph
Pr
Pr
Ph
+
1:99
71%
PhZnCl, THF
cat Pd(PPh
3
)
4
(6)
CO
2
H
Ph
O
O
94%
PhZnCl, THF
cat Pd(PPh
3
)
4
(7)
N
I
Ac
N
Ac
Ph
60%
Copper-mediated Reactions. Transmetalation of phenylzinc
halides to the corresponding copper reagents allows the reaction
with allylic halides, enones, and acid chlorides in satisfactory
yields (eq 8).
2
(8)
O
Ph
1. CuCN•2LiCl
2. cyclohexenone
TMSCl
PhZnI
3. H
2
O
93%
1.
Negishi, E.; Takahashi, T.; King, A. O., Org. Synth. 1988, 66, 67.
2.
(a) Majid, T. N.; Knochel, P., Tetrahedron Lett. 1990, 31, 4413. (b) Zhu,
L.; Wehmeyer, R. M.; Rieke, R. D., J. Org. Chem. 1991, 56, 1445.
3.
(a) Tucker, C. E.; Majid, T. N.; Knochel, P., J. Am. Chem. Soc. 1992, 114,
3983. (b) Venegas, P.; Cahiez, G.; Tucker, C. E.; Majid, T. M.; Knochel,
P., J. Chem. Soc., Chem. Commun. 1992, 1406.
4.
Sibille, S.; Ratovelomanana, V.; Perichon, J., J. Chem. Soc., Chem.
Commun. 1992
, 283.
5.
(a) Luche, J. L.; Petrier, C.; Dupuy, C., Tetrahedron Lett. 1984, 25, 3463.
(b) de Souza Barboza, J. C.; Petrier, C.; Luche, J.-L., Tetrahedron Lett.
1985, 26, 829.
6.
(a) Negishi, E.; King, A. O.; Okukado, N., J. Org. Chem. 1977, 42, 1821.
(b) Negishi, E.; Matsushita, H.; Okukado, N., Tetrahedron Lett. 1981,
22
, 2715.
7.
(a) Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M.,
Tetrahedron Lett. 1980
, 21, 845. (b) Bumagin, N. A.; Ponomaryov,
A. B.; Beletskaya, I. P., J. Organomet. Chem. 1985, 291, 129.
Avoid Skin Contact with All Reagents
2
PHENYLZINC CHLORIDE
(c) Minato, A.; Suzuki, K.; Tamao, K., J. Am. Chem. Soc. 1987, 109,
1257. (d) Hyuga, S.; Chiba, Y.; Yamashina, N.; Hara, S.; Suzuki, A.,
Chem. Lett. 1987
, 1757. (e) Hyuga, S.; Yamashina, N.; Hara, S.; Suzuki,
A., Chem. Lett. 1988, 809. (f) Satoh, Y.; Serizawa, H.; Miyaura, N.;
Hara, S.; Suzuki, A., Tetrahedron Lett. 1988, 29, 1811. (g) Celebuski, J.;
Munro, G.; Rosenblum, M., Organometallics 1986, 5, 256. (h) Bumagin,
N. A.; Ponmarev, A. B.; Beletskaya, I. P., Zh. Obshch. Khim. 1987,
23
, 1345. (i) de Graaf, W.; Boersma, J.; van Koten, G.; Elsevier, C. J.,
J. Organomet. Chem. 1989
, 378, 115. (j) Ruitenberg, K.; Kleijn, H.;
Elsevier, C. J.; Meijer, J.; Vermeer, P., Tetrahedron Lett. 1981, 22, 1451.
(k) Elsevier, C. J.; Vermeer, P., J. Org. Chem. 1985, 50, 3042. (l) Elsevier,
C. J.; Kleijn, H.; Boersma, J.; Vermeer, P., Organometallics 1986, 5, 716.
(m) Elsevier, C. J.; Kleijn, H.; Ruitenberg, K.; Vermeer, P., J. Chem. Soc.,
Chem. Commun. 1983
, 1529. (n) Tius, M. A.; Gomez-Galeno, J.; Zaidi,
J. H., Tetrahedron Lett. 1988, 29, 6909. (o) Okamoto, Y.; Yoshioka, K.;
Yamana, T.; Mori, H., J. Organomet. Chem. 1989, 369, 285. (p) Potter, G.
A.; McCague, R., J. Org. Chem. 1990, 55, 6184. (q) Gilchrist, T.; Healy,
M. A. M., Tetrahedron Lett. 1990, 31, 5807. (r) Ennis, D. S.; Gilchrist,
T. L., Tetrahedron Lett. 1989, 30, 3735. (s) Yamashina, N.; Hyuga, S.;
Hara, S.; Suzuki, A., Tetrahedron Lett. 1989, 30, 6555.
8.
Minato, A., J. Org. Chem. 1991, 56, 4052.
9.
Miller, R. B.; Al-Hassan, M. I., J. Org. Chem. 1985, 50, 2121.
10.
(a) Keenan, R. M.; Kruse, L. I., Synth. Commun. 1989, 19, 793. (b) Stork,
G.; Isaacs, R. C. A., J. Am. Chem. Soc. 1990, 112, 7399.
11.
Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T., Tetrahedron Lett.
1983, 24, 5181.
12.
(a) Klingstedt, T.; Frejd, T., Organometallics 1983, 2, 598. (b) Frejd, T.;
Klingstedt, T., Synthesis 1987, 40.
13.
(a) Keinan, E.; Sahei, M., J. Chem. Soc., Chem. Commun. 1984, 648.
(b) Negishi, E.; Chatterjee, S.; Matsushita, H., Tetrahedron Lett. 1981,
22
, 3737. (c) Chatterjee, S.; Negishi, E., J. Org. Chem. 1985, 50, 3406.
14.
(a) Matsushita, J.; Negishi, E., J. Chem. Soc., Chem. Commun. 1982, 160.
(b) Keinan, E.; Roth, Z., J. Org. Chem. 1983, 48, 1769. (c) Dunkerton,
L. V.; Serino, A. J., J. Org. Chem. 1982, 47, 2813. (d) Elsevier, C. J.;
Stehouwer, P. M.; Westmijze, H.; Vermeer, P., J. Org. Chem. 1983, 48,
1103. (e) Fiaud, J. C.; Aribi-Zouioueche, L., J. Organomet. Chem. 1985,
295
, 383. (f) Fiaud, J.-C.; Legros, J.-Y., J. Org. Chem. 1987, 52, 1907.
15.
(a) Stolle, A.; Salaün, J.; de Meijere, A., Synlett 1991, 327. (b) Stolle,
A.; Ollivier, J.; Piras, P. P.; Salaün, J.; de Meijere, A., J. Am. Chem. Soc.
1992, 114, 4051.
16.
(a) Burns, B.; Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam,
S.; Worakun, T., Tetrahedron Lett. 1989, 30, 1135. (b) Grigg, R.;
Loganathan, V.; Sukirthalingam, S.; Sridharan, V., Tetrahedron Lett.
1990, 31, 6573. (c) Wang, R.-T.; Chou, F.-L.; Luo, F.-T., J. Org. Chem.
1990, 55, 4846.
Paul Knochel
Philipps-Universität Marburg, Marburg, Germany
A list of General Abbreviations appears on the front Endpapers