ALLYL CHLORIDE
1
Allyl Chloride
1
Cl
[107-05-1]
C
3
H
5
Cl
(MW 76.53)
InChI = 1/C3H5Cl/c1-2-3-4/h2H,1,3H2
InChIKey = OSDWBNJEKMUWAV-UHFFFAOYAQ
(allylating agent which attacks C, O, N, S, Se, Te nucleophiles;
organometallic derivatives provide homoallyl alcohols; expected
electrophilic addition reactions)
Physical Data:
mp −136.4
◦
C; bp 44.6
◦
C; d 0.938 g mL
−1
.
Solubility:
miscible with organic liquids.
Form Supplied in:
colorless liquid, discoloring on standing and
exposure to air.
Purification:
wash with concd HCl, then with aq Na
2
CO
3
and
dry (CaCl
2
). Impurities include isomers and chloropropanes;
efficient fractional distillation is essential.
2a
Handling, Storage, and Precautions:
volatile, flammable, toxic,
irritant, alkylating agent.
Usually manufactured by high temperature chlorination of
propene;
2b
hence the incidence of isomeric and polychlorinated
impurities. Allyl chloride allylates ethyl acetoacetate derivatives
(40% aq KOH, Bu
4
NBr, rt, 3 h) to give 2,2-diallyl analogs (92%
yield, 97% pure).
3
Malonic esters are similarly alkylated under
dehydrating conditions (RCl, Bu
4
NBr, NaOH in PhMe).
4
Alkyl
carboxylic acids may be allylated at the α-position when the Na
salt (NaH–xylene, 135
◦
C, 2 h) is treated with Lithium Diethyl-
amide at 125–135
◦
C until loss of Et
2
NH is complete, followed
by treatment with RCl at ∼85
◦
C over some hours.
5
Ruthenium
or osmium σ-acetylide complexes (e.g. 1)
6
undergo allylation (at
the alkyne system). Some such substitutions (e.g. methanolysis)
are apparently Cu catalyzed;
7,8
an example is the formation of
3-allylpentane-2,4-dione (72%), when Cu + Cu(ClO
4
)
2
is added
to the reagents in Et
2
O (eq 1).
8
Cl
O
O
O
O
+
(1)
O
O
O
O
R
Ru(C≡CR)(PPh
3
)
2
(η-C
5
H
5
)
(1)
(2)
In the presence of peroxides (e.g. 1,1-Di-tert-butyl Peroxide)
crown ethers add to allyl chloride via the α-hydrogen abstracted
radical to form, for example, 2-(3
′
-chloropropyl)-1,4,7,10-
tetraoxacyclododecane (2; R = Cl(CH
2
)
3
). While the yields are
poor (8–10%) the product is apparently isolable,
9
and affords a
route to functionalized crown ethers.
The reductive allylation process (eq 2) occurs with aldehydes
in the presence of Bi,
10a,10b
Al/BiCl
3
,
10b,10c
Al/PbBr
2
,
11
Zn,
12
and Fe/BiCl
3
.
10b
Acid chlorides in the presence of Cp
2
Sm af-
ford allyl ketones.
13
Dry stirring Magnesium turnings in an inert
atmosphere greatly promotes the formation of allylmagnesium
chloride without the formation of biallyl and similar products.
14
In addition to the expected range of Grignard reactions based upon
allylmagnesium chloride, allyl chloride reacts with Lithium Di-
isopropylamide to form α-chloroallyllithium, which undergoes
the expected reactions with RCl, RCHO, R
3
SiCl, and R
3
SnCl
(eq 3).
15
Cl
(2)
R
R′
OH
+
RCOR′
R = H, alkyl
M = Zn, Fe, Al, etc.
M
H
H
Cl
H
H
Cl
(3)
H
H
Cl
LDA
R
R = alkyl, R
3
Si, R
3
Sn
Allyllithium (RLi) itself is made by cleavage of RSnPh
3
(from RBr, Mg, and Ph
3
SnCl)
16a,16b
or of allyl aryl ethers
(Li, THF, −15
◦
C) (eq 4).
16c
H
H
SnR
3
H
H
Li
(4)
Li
The protected glycine ester derivative (3a) affords a reagent
with 2LiCl·CuCN which allylates with allyl chloride to give the
product (3b) without loss of the stereochemical identity at the car-
bon atom α to the protected amino group (eq 5).
17
Allyl chloride
also alkylates glycine chiral ester Schiff bases in the presence of
chiral Pd complexes.
18
The allylation of the monomenthyl ester
of cyclopentane-1,2-dicarboxylic acid by RCl (R = allyl) gives
the compound (4) in which the allyl halide has approached from
the more hindered side of the molecule. Allyl tosylate gives the
sterically preferred orientation; the differences in behavior are ra-
tionalized in terms of interaction between the Li of the enolate
reagent and the Cl of RCl.
19
IZn
NHBoc
CO
2
Bn
Cl
CO
2
Bn
NHBoc
(3a)
(3b)
(5)
2LiCl
·
CuCN
HO
2
C
R
O
i
-Pr
O
(4)
Avoid Skin Contact with All Reagents
2
ALLYL CHLORIDE
Traditional nucleophilic attack is represented by reaction with
ArO
−
in the synthesis of allyl aryl ethers in a study of the Claisen
reaction,
20
and with Sodium Sulfide to give R
2
S,
21
and in the
analogous preparation of R
2
Te.
22
Friedel–Crafts allylation of ben-
zene represents an alternative route to the synthesis of propyl-
benzene after hydrogenation, since rearrangement occurs when
propyl halides are subject to this reaction; hydrated Iron(III)
Chloride proved to be a gentle, if inefficient, catalyst for such
allylations.
23
The use of Ru or Rh chlorides on polyethylenimine
to promote the addition of CXCl
3
to unsaturated systems such
as allyl chloride (eq 6) extends the older application of Lewis
acids such as Aluminum Chloride.
24
The addition of Diborane to
allyl chloride provides (γ-chloropropyl)boranes which then
provide cyclopropane;
25a
with Sodium Amide, allyl chloride gives
cyclopropene (low yield).
25b
(6)
Cl
Cl
Cl
XCl
2
C
CXCl
3
+
Related Reagents. Allyl Bromide; Allyl Iodide.
1.
(a) Kneupper, C.; Saathoff, L. In Kirk-Othmer Encycl. Chem. Technol.;
Wiley: New York, 1993; Vol. 6, p 59. (b) Anon, Dangerous Prop. Ind.
Mater. Rep. 1988
, 8, 20 (Chem. Abstr. 1988, 108, 191).
2.
(a) Oae, S.; Van der Werf, C. A., J. Am. Chem. Soc. 1953, 75, 2724. (b)
Spadlo, M.; Stajszczyk, M.; Wasilewski, J.; Pokorska, Z.; Madej, W.,
Chem. Tech. (Leipzig) 1988
, 40, 109 (Chem. Abstr. 1988, 108, 206). (c)
Spadlo, M.; Stajszczyk, M.; Pokorska, Z.; Wasilewski, J.; Szendzielorz,
J.; Madej, W.; Lewandowski, G.; Lauer, A.; Wilusz, T.; Wojcik, E. Pol.
Patent 136 334, 1987 (Chem. Abstr. 1991, 114, 26).
3.
Yamamoto, T.; Yamashita, A.; Numoto, N. Ger. Patent 3636818, 1987
(Chem. Abstr. 1987, 107, 58).
4.
(a) Yamamoto, T. Jpn. Patent 62 175 438, 1987 (Chem. Abstr. 1988, 108,
94). (b) Wu, G.; Huang, X., Youji Huaxue 1991, 11, 431 (Chem. Abstr.
1991, 115, 207).
5.
Bouisset, M.; Bousquet, A.; Heymes, A. Fr. Patent 2 599 737, 1987
(Chem. Abstr. 1988, 109, 92).
6.
Bruce, M. I.; Humphrey, M. G., Aust. J. Chem. 1989, 42, 1067.
7.
(a) Kurtz, P., Justus Liebigs Ann. Chem. 1962, 658, 6. (b) Baruah, J. B.;
Samuelson, A. G., J. Chem. Soc., Chem. Commun. 1987, 36.
8.
Baruah, J. B.; Samuelson, A. G., J. Organomet. Chem. 1989, 361, C57.
9.
Zelechonok, Yu. B.; Orlovskii, V. V.; Zelechonok, S. F.; Zlotskii, S. S.;
Rakhmankulov, D. L., Khim. Geterotsikl. Soedin. 1990, 137 (Chem.
Abstr. 1990
, 113, 78).
10.
(a) Wada, M.; Ohki, H.; Akiba, K., Tetrahedron Lett. 1986, 27, 4771.
(b) Fukase, K.; Oda, Y.; Kubo, A.; Wakamiya, T.; Shiba, T., Bull. Chem.
Soc. Jpn. 1990
, 63, 1758. (c) Wada, M.; Ohki, H.; Akiba, K., J. Chem.
Soc., Chem. Commun. 1987
, 708.
11.
(a) Tanaka, H.; Yamashita, S.; Hamatani, T.; Ikemoto, Y.; Torii, S., Synth.
Commun. 1987
, 17, 789. (b) Torii, S.; Tanaka, H.; Yamashita, S. Jpn.
Patent 63 222 123, 1988 (Chem. Abstr. 1989, 111, 56).
12.
Tashiro, K.; Tanaka, K. Jpn. Patent 63 33 344, 1988 (Chem. Abstr. 1989,
110
, 23).
13.
Collin, J.; Bied, C.; Kagan, H. B., Tetrahedron Lett. 1991, 32, 629.
14.
(a) Baker, K. V.; Brown, J. M.; Hughes, N.; Skarnulis, A. J.; Sexton,
A., J. Org. Chem. 1991, 56, 698. (b) Oppolzer, W.; Schneider, P.,
Tetrahedron Lett. 1984
, 25, 3305. (c) Benkeser, R. A., Synthesis 1971,
347.
15.
Julia, M.; Verpeaux, J.-N.; Zahneisen, T., Synlett 1990, 769.
16.
(a) Seyferth, D.; Weiner, M. A., Org. Synth., Coll. Vol. 1973, 5, 452. (b)
Seyferth, D.; Weiner, M. A., J. Org. Chem. 1959, 24, 1395. (c) Eisch, J.
J.; Jacobs, A. M., J. Org. Chem. 1963, 28, 2145.
17.
Dunn, M. J.; Jackson, R. F. W., J. Chem. Soc., Chem. Commun. 1992,
319.
18.
Genet, J. P.; Kopola, N.; Juge, S.; Ruiz- Montas, J.; Antunes, O. A. C.;
Tanier, S., Tetrahedron Lett. 1990, 31, 3133.
19.
Kigoshi, H.; Imamura, Y.; Yoshikawa, K.; Niwa, H.; Yamada, K.,
Tetrahedron Lett. 1991
, 32, 4541.
20.
Hayashi, T.; Okada, Y.; Inaba, T., J. Chem. Res. (S) 1991, 172.
21.
Kolta, R.; Mihalszky, K.; Cseko, I.; Leiki, G.; Szalay, P.; Fazekas,
D. Hung. Patent 39 423, 1986 (Chem. Abstr. 1987, 107, 58).
22.
Kirss, R. U.; Brown, D. W.; Higa, K. T.; Gedridge, R. W., Jr.,
Organometallics 1991
, 10, 3589.
23.
Gevorkyan, A. A.; Arakelyan, A. S.; Dzhaninyan, A. A.; Panosyan,
G. A., Arm. Khim. Zh. 1988, 41, 215 (Chem. Abstr. 1989, 110,
23).
24.
Kobrakov, K. I.; Popandopulo, N. G.; Perchenko, V. N.; Abubakirov,
R. Sh.; Shvekhgeimer, G. A., Neftekhimiya 1991, 31, 66 (Chem. Abstr.
1991, 115, 28).
25.
(a) Hawthorne, M. F., J. Am. Chem. Soc. 1960, 82, 1886. (b) Closs,
G. L.; Krantz, K. D., J. Org. Chem. 1966, 31, 638.
Roger Bolton
University of Surrey, Guildford, UK
A list of General Abbreviations appears on the front Endpapers