ALUMINUM CHLORIDE
1
Aluminum Chloride
1
AlCl
3
[7446-70-0]
AlCl
3
(MW 133.34)
InChI = 1/Al.3ClH/h;3*1H/q+3;;;/p-3/fAl.3Cl/h;3*1h/
qm;3*-1
InChIKey = VSCWAEJMTAWNJL-GZMOREBICG
(Lewis acid catalyst for Friedel–Crafts, Diels–Alder, [2 + 2] cy-
cloadditions, ene reactions, rearrangements, and other reactions)
Physical Data:
mp 190
◦
C (193–194
◦
C sealed tube); sublimes
at 180
◦
C; d 2.44 g cm
−3
.
Solubility:
sol many organic solvents, e.g. benzene, nitroben-
zene, carbon tetrachloride, chloroform, methylene chloride,
nitromethane, and 1,2-dichloroethane; insol carbon disulfide.
Form Supplied in:
colorless solid when pure, typically a gray
or yellow-green solid; also available as a 1.0 M nitrobenzene
solution.
Handling, Storage, and Precautions:
fumes in air with a strong
odor of HCl. AlCl
3
reacts violently with H
2
O. All containers
should be kept tightly closed and protected from moisture.
1c
Use in a fume hood.
Friedel–Crafts Chemistry.
1
,
2
AlCl
3
has traditionally been
used in stoichiometric or catalytic
3
amounts to mediate Friedel–
Crafts alkylations and acylations of aromatic systems (eq 1).
RCOCl
RCl
AlCl
3
AlCl
3
R
R
O
(1)
This is a result of the Lewis acidity of AlCl
3
which complexes
strongly with carbonyl groups.
4
Adaptations of these basic reac-
tions have been reported.
5
In chiral systems, inter- and intramolec-
ular acylations have been achieved without the loss of optical
activity (eq 2).
6
Cl
NHCO
2
Me
O
AlC
3
Cl
NHCO
2
Me
O
AlC
3
MeO
2
CHN
O
O
NHCO
2
Me
(2)
benzene
50–60%
55–75%
>98% ee
Friedel–Crafts chemistry at an asymmetric center generally pro-
ceeds with racemization, but the use of mesylates or chlorosul-
fonates as leaving groups has resulted in alkylations with excellent
control of stereochemistry.
7
The reactions proceed with inversion
of configuration (eq 3). Cyclopropane derivatives have been used
as three-carbon units in acylation reactions (eq 4).
8
In conjunc-
tion with triethylsilane, a net alkylation is possible under acylation
conditions (eq 5).
9
These conditions are compatible with halogen
atoms present elsewhere in the molecule. Acylation reactions of
phenolic compounds with heteroaromatic systems have also been
accomplished (eq 6).
10
CO
2
Me
X
AlCl
3
PhH
50–80%
>97%
CO
2
Me
Ph
(3)
X = OSO
2
Me, OSO
2
Cl
(S)
(S)
CO
2
Et
AlCl
3
PhH
93%
O
(4)
(5)
RCOCl, AlCl
3
Et
3
SiH
43–94%
R
R
R
OH
OH
N
N
Cl
Cl
Cl
AlCl
3
63%
N
N
Cl
OH
Cl
HO
(6)
+
Treatment of aryl azides with AlCl
3
has been reported to give
polycyclic aromatic compounds (eq 7),
11
or aziridines when the
reactions are run in the presence of alkenes (eq 8).
12
N
3
AlCl
3
89%
N
H
(7)
AlCl
3
63–93%
N
3
R
N
Ar
(8)
+
n
n
n
= 1, 2
The scope of Friedel–Crafts chemistry has been expanded
beyond aromatic systems to nonaromatic systems, such as alkenes
and alkynes and the mechanistic details have been investigated.
13
The Friedel–Crafts alkylation
14
and acylation
15
of alkenes pro-
vide access to a variety of organic systems (eq 9). The acylation of
alkynes provides access to cyclopentenone derivatives (eq 10).
16
In addition, one can use this chemistry to access indenyl systems
17
and vinyl chlorides.
18
Allylic sulfones can undergo allylation
chemistry (eq 11).
19
AcCl
AlCl
3
48%
H
H
Ac
Cl
(9)
Avoid Skin Contact with All Reagents
2
ALUMINUM CHLORIDE
(10)
1. AlCl
3
,
45–70%
CH
HC
2. Zn
R
1
R
2
Cl
O
O
R
1
R
2
O
SO
2
Ph
AlCl
3
O
O
AlCl
3
(11)
78%
90%
The use of silyl derivatives in Friedel–Crafts chemistry has
not only improved the regioselectivity but extended the scope
of these reactions. Substitution at the ipso position occurs with
aryl silanes (eq 12).
20
The ability of silyl groups to stablize
β
-carbenium ions (β-effect) affords acylated products with
complete control of regiochemistry (eq 13).
21
TMS
Cl
O
TMS
TMS
AlCl
3
TMS
O
TMS
(12)
75%
+
TMS
AcCl
AlCl
3
O
(13)
77%
The use of silylacetylenes gives ynones (eq 14),
22
cyclopen-
tenone derivatives (eq 15),
23
and α-amino acid derivatives
(eq 16).
24
R
Cl
O
TMS
TMS
AlCl
3
R
O
TMS
(14)
85–94%
+
Cl
O
TMS
AlCl
3
O
Cl
TMS
(15)
63%
+
EtO
2
CNH
CO
2
Me
Cl
H
TMS
TMS
AlCl
3
EtO
2
CNH
CO
2
Me
H
TMS
(16)
65%
+
Propargylic silanes undergo acylation to generate allenyl
ketones (eq 17),
25
while alkylsilanes afford cycloalkanones
(eq 18).
26
TMS
R
AcCl
AlCl
3
R
O
•
(17)
COCl
TMS
R
AlCl
3
O
R
(18)
60–87%
Several name reactions are promoted by AlCl
3
. For exam-
ple, the Darzens–Nenitzescu reaction is simply the acylation
of alkenes. The Ferrario reaction generates phenoxathiins from
diphenyl ethers (eq 19).
27
The rearrangement of acyloxy aro-
matic systems is known as the Fries rearrangement (eq 20).
28
Aryl aldehydes are produced by the Gatterman aldehyde synthe-
sis (eq 21).
29
The initial step of the Haworth phenanthrene syn-
thesis makes use of a Friedel–Crafts acylation.
30
The acylation
of phenolic compounds is called the Houben–Hoesch reaction
(eq 22).
31
The Leuckart amide synthesis generates aryl amides
from isocyanates (eq 23).
32
O
O
S
(19)
87%
S
AlCl
3
O
OAc
OAc
AlCl
3
O
OH
OH
O
(20)
85%
AlCl
3
OR
OR
CHO
(21)
HCl
HCN
AlCl
3
RCN
OH
OH
OH
OH
R
O
(22)
HCl
AlCl
3
NHR
O
(23)
RNCO
Amides can also be obtained by AlCl
3
catalyzed ester amine
exchange which proceeds primarily without racemization of chi-
ral centers (eq 24).
33
The reaction of phenols with β-keto esters is
A list of General Abbreviations appears on the front Endpapers
ALUMINUM CHLORIDE
3
known as the Pechmann condensation (eq 25).
34
Aryl amines are
used in the Riehm quinoline synthesis (eq 26).
35
Aromatic sys-
tems may be coupled via the Scholl reaction (eq 27)
36
and indole
derivatives are prepared in the Stolle synthesis (eq 28).
37
In the
Zincke-Suhl reaction, phenols are converted to dienones (eq 29).
38
AlCl
3
Et
2
NH
77%
CO
2
Me
Cl
CONEt
2
Cl
(24)
(S) 98%
S
:R = 82:18
AlCl
3
40–55%
OH
CO
2
Me
O
O
O
(25)
+
AlCl
3
NH
3
O
N
(26)
+
+
AlCl
3
68%
O
O
(27)
AlCl
3
(28)
N
O
Cl
R
2
R
1
R
N
O
R
2
R
1
R
AlCl
3
CCl
4
37–42%
OH
O
CCl
3
(29)
Diels–Alder Reactions. There is some evidence that AlCl
3
catalysis of Diels–Alder reactions changes the transition state
from a synchronous to an asynchronous one.
39
This also enhances
asymmetric induction by increasing steric interactions at one end
of the dieneophile. There are many examples of AlCl
3
promoted
Diels–Alder reactions (eq 30).
40
Hetero-Diels–Alder reactions
can be used to generate oxygen (eq 31)
41
and nitrogen (eq 32)
42
containing heterocycles.
OMe
O
H
AlCl
3
62%
OMe
O
H
H
CO
3
Et
(30)
+
CO
2
Et
O
AlCl
3
70%
O
CN
(31)
+
OTMS
Ph
NPh
AlCl
3
60%
N
Ph
Ph
H
OTMS
(32)
+
AlCl
3
can also be used to catalyze [2 + 2] cycloaddition reac-
tions (eq 33)
43
and ene reactions (eq 34).
44
AlCl
3
16%
O
H
Et
O
(33)
O
O
AlCl
3
(34)
O
MVK
80–90%
O
O
Rearrangements. AlCl
3
catalyzed rearrangement of hydro-
carbon derivatives to adamantanes has been well documented
(eq 35).
45
Other rearrangements have been used in triquinane syn-
thesis (eq 36).
46
AlCl
3
(35)
60%
AlCl
3
(36)
93%
H
O
H
O
Miscellaneous Reactions. AlCl
3
has been used to catalyze the
addition of allylsilanes to aldehydes and acid chlorides (eq 37).
47
Cyclic ethers (pyrans and oxepins) have been prepared with hy-
droxyalkenes (eq 38).
48
The course of reactions between aldehy-
des and allylic Grignard reagents can be completely diverted to
α
-allylation by AlCl
3
(eq 39).
49
The normal course of the reaction
gives γ-allylation products.
R
′
TMS
RCHO
R
OTMS
R
′
(37)
AlCl
3
40–45%
Avoid Skin Contact with All Reagents
4
ALUMINUM CHLORIDE
Ph
OH
MeCHO
O
Cl
Ph
(38)
AlCl
3
57%
MgBr
RCHO
R
OH
(39)
AlCl
3
AlCl
3
can be used to remove t-butyl groups from aromatic
rings (eq 40),
50
thereby using this group as a protecting ele-
ment for a ring position. AlCl
3
has also been used to remove
p
-nitrobenzyl (PNB) and benzhydryl protecting groups (eq 41).
51
The combination of AlCl
3
and Ethanethiol has formed the ba-
sis of a push–pull mechanism for the cleavage of many types of
bonds including C–X,
52
C–NO
2
,
53
C=C,
54
and C–O.
55
Further-
more, AlCl
3
has been used to catalyze chlorination of aromatic
rings,
56
open epoxides,
57
and mediate addition of dichlorophos-
phoryl groups to alkanes.
58
OH
t
-Bu
t
-Bu
t
-Bu
AlCl
3
OH
(40)
80%
N
R
O
S
CO
2
PNB
NHCO
2
PNB
AlCl
3
N
R
O
S
CO
2
H
NH
2
(41)
24–82%
1.
(a) Thomas, C. A. Anhydrous Aluminum Chloride in Organic
Chemistry
; ACS Monograph Series; Reinholdt: New York, 1941.
(b) Shine, H. J. Aromatic Rearrangements; Elsevier: Amsterdam, 1967.
(c) Fieser & Fieser 1967, 1, 24. (d) Olah, G. A. Friedel–Crafts Chemistry;
Wiley: New York, 1973. (e) Roberts, R. M.; Khalaf, A. A. Friedel–Crafts
Alkylation Chemistry
; Marcel Dekker: New York, 1984.
2.
Gore, P. H., C. R. Hebd. Seances Acad. Sci. 1955, 55, 229.
3.
Pearson, D. E.; Buehler, C. A., Synthesis 1972, 533.
4.
(a) Tan, L. K.; Brownstein, S., J. Org. Chem. 1982, 47, 4737. (b) Tan, L.
K.; Brownstein, S., J. Org. Chem. 1983, 48, 3389.
5.
Drago, R. S.; Getty, E. E., J. Am. Chem. Soc. 1988, 110, 3311.
6.
McClure, D. E.; Arison, B. H.; Jones, J. H.; Baldwin, J. J., J. Org. Chem.
1981, 46, 2431.
7.
Piccolo, O.; Spreafico, F.; Visentin, G.; Valoti, E., J. Org. Chem. 1985,
50
, 3945.
8.
Pinnick, H. W.; Brown, S. P.; McLean, E. A.; Zoller, L. W., J. Org. Chem.
1981, 46, 3758.
9.
Jaxa-Chamiel, A.; Shah, V. P.; Kruse, L. I., J. Chem. Soc., Perkin Trans.
1 1989
, 1705.
10.
(a) Pollak, A.; Stanovnik, B.; Tisler, M., J. Org. Chem. 1966, 31, 4297.
(b) Coates, W. J.; McKillop, A., J. Org. Chem. 1990, 55, 5418.
11.
Takeuchi, H.; Maeda, M.; Mitani, M.; Koyama, K., J. Chem. Soc., Chem.
Commun. 1985
, 287.
12.
Takeuchi, H.; Shiobara, Y.; Kawamoto, H.; Koyama, K., J. Chem. Soc.,
Perkin Trans. 1 1990
, 321.
13.
(a) Puck, R.; Mayr, H.; Rubow, M.; Wilhelm, E., J. Am. Chem. Soc. 1986,
108
, 7767. (b) Brownstein, S.; Morrison, A.; Tan, L. K., J. Org. Chem.
1985, 50, 2796.
14.
Mayr, H.; Striepe, W., J. Org. Chem. 1983, 48, 1159.
15.
(a) Ansell, M. F.; Ducker, J. W., J. Chem. Soc. 1960, 5219. (b) Cantrell,
T. S., J. Org. Chem. 1967, 32, 1669. (c) Groves, J. K., Chem. Soc. Rev.
1972, 1, 73. (d) House, H. O. Modern Synthetic Reactions; Benjamin-
Cummings: Menlo Park, CA, 1972; p 786.
16.
(a) Martin, G. J.; Rabiller, C.; Mabon, G., Tetrahedron Lett. 1970, 3131.
(b) Rizzo, C. J.; Dunlap, N. A.; Smith, A. B., J. Org. Chem. 1987, 52,
5280.
17.
Maroni, R.; Melloni, G.; Modena, G., J. Chem. Soc., Perkin Trans. 1
1974, 353.
18.
Maroni, R.; Melloni, G.; Modena, G., J. Chem. Soc., Perkin Trans. 1
1973, 2491.
19.
Trost, B. M.; Ghadiri, M. R., J. Am. Chem. Soc. 1984, 106, 7260.
20.
(a) Eaborn, C., J. Chem. Soc 1956, 4858. (b) Habich, D.; Effenberger,
F., Synthesis 1979, 841.
21.
(a) Fleming, I.; Pearce, A., J. Chem. Soc., Chem. Commun. 1975, 633.
(b) Fristad, W. E.; Dime, D. S.; Bailey, T. R.; Paquette, L. A., Tetrahedron
Lett. 1979
, 1999.
22.
(a) Walton, D. R. M.; Waugh, F., J. Organomet. Chem. 1972, 37, 45. (b)
Newman, H., J. Org. Chem. 1973, 38, 2254.
23.
Karpf, M., Tetrahedron Lett. 1982, 23, 4923.
24.
Casara, P.; Metcalf, B. W., Tetrahedron Lett. 1978, 1581.
25.
Flood, T.; Peterson, P. E., J. Org. Chem. 1980, 45, 5006.
26.
Urabe, H.; Kuwajima, I., J. Org. Chem. 1984, 49, 1140.
27.
Ferrario, E., Bull. Soc. Chem. Fr. 1911, 9, 536.
28.
(a) Blatt, A. H., Org. React. 1942, 1, 342. (b) Gammill, R. B., Tetrahedron
Lett. 1985
, 26, 1385.
29.
Truce, W. E., Org. React. 1957, 9, 37.
30.
Berliner, E., Org. React. 1949, 5, 229.
31.
Spoerri, P. E.; Dubois, A. S., Org. React. 1949, 5, 387.
32.
Effenberger, F.; Gleiter, R., Chem. Ber. 1964, 97, 472.
33.
Gless, R. D., Synth. Commun. 1986, 16, 633.
34.
Sethna, S.; Phadke, R., Org. React. 1953, 7, 1.
35.
Elderfield, R. C.; McCarthy, J. R., J. Am. Chem. Soc. 1951, 73, 975.
36.
Clowes, G. A., J. Chem. Soc., Perkin Trans. 1 1968, 2519.
37.
Sumpter, W. C., C. R. Hebd. Seances Acad. Sci. 1944, 34, 393.
38.
Newman, M. S.; Wood, L. L., J. Am. Chem. Soc. 1959, 81, 6450.
39.
Tolbert, L. M.; Ali, M. B., J. Am. Chem. Soc. 1984, 106, 3806.
40.
(a) Cohen, N.; Banner, B. L.; Eichel, W. F., Synth. Commun. 1978, 8, 427.
(b) Fringuelli, F.; Pizzo, F.; Taticchi, A.; Wenkert, E., Synth. Commun.
1979, 9, 391. (c) Ismail, Z. M.; Hoffmann, H. M. R., J. Org. Chem. 1981,
46
, 3549. (d) Vidari, G.; Ferrino, S.; Grieco, P. A., J. Am. Chem. Soc.
1984, 106, 3539. (e) Angell, E. C.; Fringuelli, F.; Guo, M.; Minuti, L.;
Taticchi, A.; Wenkert, E., J. Org. Chem. 1988, 53, 4325.
41.
Ismail, Z. M.; Hoffmann, H. M. R., Angew. Chem., Int. Ed. Engl. 1982,
21
, 859.
42.
LeCoz, L.; Wartski, L.; Seyden-Penne, J.; Chardin, P.; Nierlich, M.,
Tetrahedron Lett. 1989
, 30, 2795.
43.
Jung, M. E.; Haleweg, K. M., Tetrahedron Lett. 1981, 22, 2735.
44.
(a) Snider, B. B.; Rodini, D. J.; Conn, R. S. E.; Sealfon, S., J. Am. Chem.
Soc. 1979
, 101, 5283. (b) Mehta, G.; Reddy, A. V., Tetrahedron Lett.
1979, 2625. (c) Snider, B. B., Acc. Chem. Res. 1980, 13, 426.
45.
(a) Bingham, R. C.; Schleyer, P. R., Top. Curr. Chem. 1971, 18, 1. (b)
McKervey, M. A., Chem. Soc. Rev. 1974, 3, 479. (c) McKervey, M. A.,
Tetrahedron 1980
, 36, 971.
46.
Kakiuchi, K.; Ue, M.; Tsukahara, H.; Shimizu, T.; Miyao, T.; Tobe, Y.;
Odaira, Y.; Yasuda, M.; Shima, K., J. Am. Chem. Soc. 1989, 111, 3707.
47.
(a) Deleris, G.; Donogues, J.; Calas, R., Tetrahedron Lett. 1976, 2449.
(b) Pillot, J.-P.; Donogues, J.; Calas, R., Tetrahedron Lett. 1976, 1871.
A list of General Abbreviations appears on the front Endpapers
ALUMINUM CHLORIDE
5
48.
Coppi, L.; Ricci, A.; Taddai, M., J. Org. Chem. 1988, 53, 911.
49.
Yamamoto, Y.; Maruyama, K., J. Org. Chem. 1983, 48, 1564.
50.
Lewis, N.; Morgan, I., Synth. Commun. 1988, 18, 1783.
51.
Ohtani, M.; Watanabe, F.; Narisada, M., J. Org. Chem. 1984, 49, 5271.
52.
Node, M.; Kawabata, T.; Ohta, K.; Fujimoto, M.; Fujita, E.; Fuji, K., J.
Org. Chem. 1984
, 49, 3641.
53.
Node, M.; Kawabata, T.; Ueda, M.; Fujimoto, M.; Fuji, K.; Fujita, E.,
Tetrahedron Lett. 1982
, 23, 4047.
54.
Fuji, K.; Kawabata, T.; Node, M.; Fujita, E., J. Org. Chem. 1984, 49,
3214.
55.
Node, M.; Nishide, K.; Ochiai, M.; Fuji, K.; Fujita, E., J. Org. Chem.
1981, 46, 5163.
56.
Watson, W. D., J. Org. Chem. 1985, 50, 2145.
57.
Eisch, J. J.; Liu, Z.-R.; Ma, X.; Zheng, G.-X., J. Org. Chem. 1992, 57,
5140.
58.
Olah, G. A.; Farooq, O.; Wang, Q.; Wu, A.-H., J. Org. Chem. 1990, 55,
1224.
Paul Galatsis
University of Guelph, Guelph, Ontario, Canada
Avoid Skin Contact with All Reagents