P32 028

background image

28.

(a) Noting that the magnitude of the electric field (assumed uniform) is given by E = V /d (where

d = 5.0 mm), we use the result of part (a) in Sample Problem 32-3

B =

µ

0

ε

0

r

2

dE

dt

=

µ

0

ε

0

r

2d

dV

dt

(for r

≤ R) .

We also use the fact that the time derivative of sin(ωt) (where ω = 2πf = 2π(60)

377/s in this

problem) is ω cos(ωt). Thus, we find the magnetic field as a function of r (for r

≤ R; note that this

neglects “fringing” and related effects at the edges):

B =

µ

0

ε

0

r

2d

V

max

ω cos(ωt)

=

⇒ B

max

=

µ

0

ε

0

rV

max

ω

2d

where V

max

= 150 V. This grows with r until reaching its highest value at r = R = 30 mm:

B

max





r=R

=

µ

0

ε

0

RV

max

ω

2d

=



4π

× 10

7

H/m

 

8.85

× 10

12

F/m

 

30

× 10

3

m



(150 V)(377/s)

2(5.0

× 10

3

m)

=

1.9

× 10

12

T .

(b) For r

0.03 m, we use the B

max

=

µ

0

ε

0

rV

max

ω

2d

expression found in part (a) (note the B

∝ r depen-

dence), and for r

0.03 m we perform a similar calculation starting with the result of part (b)in

Sample Problem 32-3:

B

max

=



µ

0

ε

0

R

2

2r

dE

dt



max

=



µ

0

ε

0

R

2

2rd

dV

dt



max

=



µ

0

ε

0

R

2

2rd

V

max

ω cos(ωt)



max

=

µ

0

ε

0

R

2

V

max

ω

2rd

(for r

≥ R)

(note the B

∝ r

1

dependence – See also Eqs. 32-40 and 32-41). The plot (with SI units understood)

is shown below.

0

2e–13

4e–13

6e–13

8e–13

1e–12

1.2e–12

1.4e–12

1.6e–12

1.8e–12

B

0.02

0.04

0.06

0.08

0.1

r


Document Outline


Wyszukiwarka

Podobne podstrony:
p09 028
P32 059
P20 028
028 LS kp2
EnkelNorskGramatik 028
P32 019
p03 028
P32 025
P32 036
P32 014
P32 004
P32 023
028
P32 052
M Domańska, Dyskryminacja ze wzgledu na wiek w orzecznictwie TS eps 2011 04 028
P32 015
028 Złota epoka musicalu lata 50

więcej podobnych podstron