l16 print

background image

L16: 6.111 Spring 2006

1

Introductory Digital Systems Laboratory

L16: Power Dissipation in Digital Systems

L16: Power Dissipation in Digital Systems

background image

L16: 6.111 Spring 2006

2

Introductory Digital Systems Laboratory

Problem #1: Power Dissipation/Heat

Problem #1: Power Dissipation/Heat

5KW

18KW

1.5KW

500W

4004

8008

8080

8085

8086

286

386

486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008

Year

Power (Watts)

4004

8008

8080

8085

8086

286

386

486

Pentium® proc

P6

1

10

100

1000

10000

1970

1980

1990

2000

2010

Year

Power Density

(W/cm2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Courtesy Intel (S. Borkar)

How do you cool these chips??

How do you cool these chips??

chip

heat sink

background image

L16: 6.111 Spring 2006

2

Introductory Digital Systems Laboratory

Problem #2: Energy Consumption

Problem #2: Energy Consumption

(Image by MIT OCW. Adapted from Jon
Eager, Gates Inc. , S. Watanabe, Sony Inc.)

No Moore’s law for batteries…

Today: Understand where power goes

and ways to manage it

What can

One Joule

of energy do?

Send a 1

Megabyte

file over

802.11b

Operate a

processor

for ~ 7s

The Energy Problem

7.5 cm

3

AA battery

Alkaline:

~10,000J

Mow your

lawn for

1 ms

Image by MIT OCW.

background image

L16: 6.111 Spring 2006

3

Introductory Digital Systems Laboratory

Dynamic Energy Dissipation

Dynamic Energy Dissipation

V

DD

C

L

E

0

1

= C

L

V

DD

2

E

cap

= 1/2C

L

V

DD

2

i

DD

E

diss, RP

= 1/2C

L

V

DD

2

V

DD

C

L

IN =1

E

diss,RN

=1/2C

L

V

DD

2

Charging

Discharging

IN =0

P = C

L

V

DD

2

f

clk

R

N

R

P

R

N

R

P

background image

L16: 6.111 Spring 2006

4

Introductory Digital Systems Laboratory

The Transition Activity Factor

The Transition Activity Factor

α

α

0

0

>

>

1

1

Current

Next

Output

Input

Input

Transition

00

00

1

−> 1

00

01

1

−> 1

00

10

1

−> 1

00

11

1

−> 0

01

00

1

−> 1

01

01

1

−> 1

01

10

1

−> 1

01

11

1

−> 0

10

00

1

−> 1

10

01

1

−> 1

10

10

1

−> 1

10

11

1

−> 0

11

00

0

−> 1

11

01

0

−> 1

11

10

0

−> 1

11

11

0

−> 0

α

0

−>1

= 3/16

Assume inputs (A,B) arrive
at f
and are uniformly
distributed

What is the average
power dissipation?

P =

α

0−>1

C

L

V

DD

2

f

Z

A

B

background image

L16: 6.111 Spring 2006

5

Introductory Digital Systems Laboratory

Junction (Silicon) Temperature

Junction (Silicon) Temperature

Simple Scenario

T

j

-T

a

= R

θJA

P

D

Silicon

R

θJA

is the thermal resistance

between silicon and Ambient

R

θJA

P

D

T

j

= T

a

+ R

θJA

P

D

Make this as low as possible

Realistic Scenario

R

θJC

P

D

R

θCA

= R

θCS

+ R

θSA

Sink

Case

Silicon

T

J

T

A

T

J

T

C

T

S

T

A

T

J

T

C

T

S

T

A

R

θCS

R

θSA

is minimized by facilitating heat transfer

(bolt case to extended metal surface – heat sink)

background image

L16: 6.111 Spring 2006

6

Introductory Digital Systems Laboratory

Intel Pentium 4 Thermal Guidelines

Intel Pentium 4 Thermal Guidelines

„

Pentium 4 @ 3.06 GHz dissipates 81.8W!

„

Maximum T

C

= 69 °C

„

R

CA

< 0.23 °C/W for 50 C ambient

„

Typical chips dissipate 0.5-1W (cheap
packages without forced air cooling)

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare. Adapted

from Intel Pentium 4 documentation.

.

background image

L16: 6.111 Spring 2006

7

Introductory Digital Systems Laboratory

Power Reduction Strategies

Power Reduction Strategies

„

Reduce Transition Activity or Switching

Events

„

Reduce Capacitance (e.g., keep wires

short)

„

Reduce Power Supply Voltage

„

Frequency is typically fixed by the
application, though this can be adjusted to
control power

P =

α

0−>1

C

L

V

DD

2

f

Optimize at all levels of design hierarchy

Optimize at all levels of design hierarchy

background image

L16: 6.111 Spring 2006

8

Introductory Digital Systems Laboratory

Clock Gating is a Good Idea!

Clock Gating is a Good Idea!

+

X

Global Clock

Adder Clock

Multiplier Clock

Adder Off

Enable_Adder

Enable_Multiplier

Multiplier On

100’s of different clocks in a microprocessor

Clock Gating Reduces Energy, does it reduce Power?

Clock Gating Reduces Energy, does it reduce Power?

Clock gating reduces activity

and is the most common low-power

technique used today

background image

L16: 6.111 Spring 2006

9

Introductory Digital Systems Laboratory

Does your GHz Processor run at a GHz?

Does your GHz Processor run at a GHz?

Processor

Thermal
Sensor

ƒ

Note that there is a difference between average and peak

power

ƒ

On-chip thermal sensor (diode based), measures the silicon

temperature

ƒ

If the silicon junction gets too hot (say 125 °C), then the

activity is reduced (e.g., reduce clock rate or use clock gating)

Chip
Activity
Control

Use of Thermal Feedback

Use of Thermal Feedback

background image

L16: 6.111 Spring 2006

10

Introductory Digital Systems Laboratory

Power Supply Resonance

Power Supply Resonance

L

board

L

package

R

grid

Switching
currents

Board decap

On-die
decap

Can write a Virus to Activate

Can write a Virus to Activate

Power Supply Resonance!

Power Supply Resonance!

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

background image

L16: 6.111 Spring 2006

11

Introductory Digital Systems Laboratory

Number Representation:

Number Representation:

Two

Two

s Complement vs. Sign Magnitude

s Complement vs. Sign Magnitude

Sign-Magnitude

Two’s complement

Consider a 16 bit bus where inputs toggles
between +1 and –1 (i.e., a small noise input)

Which representation is more energy efficient?

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7

-0

-1

-2

-3

-4

-5

-6

-7

background image

L16: 6.111 Spring 2006

12

Introductory Digital Systems Laboratory

Time Sharing is a Bad Idea

Time Sharing is a Bad Idea

Time Sharing Increases Switching Activity

Time Sharing Increases Switching Activity

2

background image

L16: 6.111 Spring 2006

13

Introductory Digital Systems Laboratory

Not just a 6

Not just a 6

-

-

1 Issue:

1 Issue:

Cool

Cool

Software ???

Software ???

CPU

01111111

00000000

01111111

00000001

01111111

00000010

01111111

00000011

10000000

00000000

10000000

00000001

10000000

00000010

10000000

00000011

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]
b[2]
b[3]

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {a[i] = sin(

pi * i /256

);}

for (i = 0; i < 255; i++) {b[i] = cos(

pi * i /256

);}

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {

a[i] = sin(pi * i /256);
b[i] = cos(pi * i /256);

}

address

MEMORY

address

16

512(8)+2+4+8+16+32+64+128+256

=

4607 bit transitions

2(8)+2(2+4+8+16+32+64+128+256)

=

1030 transitions

background image

L16: 6.111 Spring 2006

14

Introductory Digital Systems Laboratory

Glitching

Glitching

Transitions

Transitions

„

Balancing paths reduces glitching transitions

„

Structures such as multipliers have lot of glitching transitions

„

Keeping logic depths short (e.g., pipelining) reduces glitching

+

+

+

A

B C

D

(A+B) + (C+D)

+

+

+

A

B

C

D

(((A+B) + C)+D)

Chain Topology

Tree Topology

background image

L16: 6.111 Spring 2006

15

Introductory Digital Systems Laboratory

Reduce Supply Voltage : But is it Free?

Reduce Supply Voltage : But is it Free?

IN

OUT

V

DD

+

-

C

L

t =0+

2

)

(

2

T

V

DD

V

K

S

DD

V

V

DD

V

S

G

D

DD

T

DD

DD

V

V

V

V

T

V

DD

V

k

DD

V

L

C

D

i

V

L

C

Delay

1

)

(

2

2

)

(

2

2

=

Δ

=

V

DD

from 2V to 1V,

energy

by x4

,

delay

x2

background image

L16: 6.111 Spring 2006

16

Introductory Digital Systems Laboratory

Transistors Are Free

Transistors Are Free

(What do you do with a Billion Transistors?)

(What do you do with a Billion Transistors?)

OUT

IN

X

P

serial

= C

mult

2

2

f

P

f =1GHz
V

DD

=2V

parallel

= (2C

mult

1

2

f /2) =

P

serial

/4

X

X

IN

f = 500Mhz
V

DD

=1V

f = 500Mhz
V

DD

=1V

IN

SELECT

Trade Area for Low Power

Trade Area for Low Power

OUT

background image

L16: 6.111 Spring 2006

17

Introductory Digital Systems Laboratory

Algorithmic Workload

Algorithmic Workload

Exploit Time Varying Algorithmic Workload

Exploit Time Varying Algorithmic Workload

To Vary the Power Supply Voltage

To Vary the Power Supply Voltage

Image by MIT OCW.

background image

L16: 6.111 Spring 2006

18

Introductory Digital Systems Laboratory

Dynamic Voltage Scaling (DVS)

Dynamic Voltage Scaling (DVS)

ACTIVE

IDLE

E

FIXED

= ½ C V

DD

2

Fixed Power Supply

ACTIVE

E

VARIABLE

= ½ C (V

DD

/2)

2

=

E

FIXED

/ 4

Variable Power Supply

0.2

0.4

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Normalized Workload

Normalized Energy

Fixed Supply

Variable

Supply

0

0

0.6

[Gutnik97]

background image

L16: 6.111 Spring 2006

19

Introductory Digital Systems Laboratory

DVS on a Processor

DVS on a Processor

Digitally adjustable DC-DC

converter powers SA-1110 core

μOS selects appropriate clock frequency
based on workload and latency constraints

SA-1110

Control

μOS

V

out

Controller

3.6V

5

Figure by MIT OpenCourseWare. Adapted

from R. Min, T. Furrer, and A. P. Chandrakasan.

"Dynamic Voltage Scaling Techniques for

Distributed Microsensor Networks." Workshop

on VLSI (April 2000): 43-46.

Ener

gy per Operation

Frequency (MHz)

Core Voltage (V)

59.0

88.5

118.0

147.5

176.9

206.4

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1

0.8

0.6

0.4

0.2

0

background image

L16: 6.111 Spring 2006

20

Introductory Digital Systems Laboratory

Energy Efficiency of Software

Energy Efficiency of Software

CLB

CLB

C LB

C LB

FPGA (Xilinx)

Software

Software

Energy Dissipation has Large Overhead

Energy Dissipation has Large Overhead

Processor (StrongARM-1100)

0.25

0.2

0.15

0.1

0.05

0

ARM Instructions

Average Current (A)

Figure by MIT OpenCourseWare. Adapted from A. Sinha, DAC.

45
40

35

30

25

20

15

10

5
0

Cache

Cpntrol

GCLK

EBOX

I/O,PLL

Power (%)

Figure by MIT OpenCourseWare. Adapted from Montanaro 1996, JSSC.

Interconnect

Clock

CLB

I/O

5%

9%

21%

65%

Image by MIT OpenCourseWare. Adapted from Kusse 1998, UCB.

background image

L16: 6.111 Spring 2006

21

Introductory Digital Systems Laboratory

Trends: Leakage and Power Gating

Trends: Leakage and Power Gating

Low V

T

devices

are

leaky - Use a

High V

T

device

is used

to gate

leakage

current

Sleep

Duty Cycle (%)

Total Energy

/S

witching Energy

V

DD

C

V

DD

C

E

E

=

=

V

V

DD

DD

I

I

0

0

10

10

-

-

V

V

T

T

/

/

S

S

E

E

=

=

CV

CV

DD

DD

2

2

Switching

Switching

(computing)

(computing)

Leakage

Leakage

(standby)

(standby)

0

1

background image

L16: 6.111 Spring 2006

22

Introductory Digital Systems Laboratory

Trends: Energy Scavenging

Trends: Energy Scavenging

Image removed due to

copyright restrictions.

Vibration-to-Electric

Conversion

~ 10

μW

MEMS Generator

Power Harvesting Shoes

Courtesy of Joe Paradiso (MIT Media Lab).

Used with permission.

After 3-6 steps, it provides 3 mA

for 0.5 sec

~10mW


Document Outline


Wyszukiwarka

Podobne podstrony:
Multilayer Composite Print 2
5 Maerchen PRINT
jp5 print
Multilayer Composite Print (3)
pcb pdf, Top Paste Mask Print
Multilayer Composite Print
Multilayer Composite Print
Print your own organs[1]
tpd print screeny
jp2 print
2012 AMI wyklad print cz1
6023 print at home original id Nieznany
print (10)
groups34 PRINT
Print Screen+opis
BS 012 Print at Home original

więcej podobnych podstron