p14 087

background image

87.

(a) Converting T to seconds (by multiplying by 3.156

× 10

7

) we do a linear fit of T

2

versus a

3

by the

method ofleast squares. We obtain (with SI units understood)

T

2

=

7.4 × 10

15

+ 2.982

× 10

19

a

3

.

The coefficient of a

3

should be 4π

2

/GM so that this result gives the mass ofthe Sun as

M =

4π

2

(6.67

× 10

11

m

3

/kg

·s

2

) (2.982

× 10

19

s

2

/m

3

)

= 1.98

× 10

30

kg .

(b) Since log T

2

= 2 log T and log a

3

= 3 log a then the coefficient ofloga in this next fit should be close

to 3/2, and indeed we find

log T =

9.264 + 1.50007 log a .

In order to compute the mass, we recall the property log AB = log A + log B, which when applied
to Eq. 14-33 leads us to identify

9.264 =

1

2

log



4π

2

GM



=

⇒ M = 1.996 × 10

30

2.00 × 10

30

kg .


Document Outline


Wyszukiwarka

Podobne podstrony:
p14 060
pc 07s084 087
p14 080
087 Ustawa o og lnym bezpieczenstwie produkt w
P25 087
p14 011
p14 082
P16 087
p14 065
p14 005
12 2005 087 089
p14 088
p14 049
p14 053
Ćwiczenie P14, Ćwiczenie P14 (5), Piotr Wajs
p14 016
p14 059
p14 064

więcej podobnych podstron