9 Signal Filtering

background image

„Signal Theory” Zdzisław Papir

Signal Filtering

background image

Signal Filtering

Signal filtering – Fourier series

Signal filtering - examples

Signal filtering – Fourier transform

Frequency characteristics of a signal after filtration

Signal filtering – example

„Signal Theory” Zdzisław Papir

background image

)

(s

H

)

(t

x

 

st

e

s

H





n

t

jn

n

e

X

t

x

o

)

(









n

t

jn

n

n

t

jn

Y

n

e

Y

e

jn

H

X

t

y

n

o

o

o

)

(

 

 

The Fourier series of the output signal y(t)

Signal filtering – Fourier series

st

e

 

t

y

„Signal Theory” Zdzisław Papir

background image

Sawtooth input signal x(t)

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sawtooth signal (period T)

time t/T

x(t)

 

t

n

n

e

n

j

t

x

n

t

jn

n

n

o

1

2

0

sin

1

1

2

1

1

2

2

1





Signal filtering - examples

„Signal Theory” Zdzisław Papir

background image

Lowpass filter

 

RC

T

T

s

Ts

Cs

R

Cs

s

H

,

1

1

1

1

1

1

1

g

g

R

C

„Signal Theory” Zdzisław Papir

background image

Lowpass
filter

 

 

 





1

,

log

20

1

,

0

log

20

1

1

,

1

1

g

g

g

2

g

g

H

H

j

j

H

„Signal Theory” Zdzisław Papir

10

-1

10

0

10

1

10

2

10

-4

10

-3

10

-2

10

-1

10

0

g

 

dec

 

 

dB

H

log-log amplitude characteristics of the LPF (1st order)

background image

Input/output signals – Fourier
series

 

t

jn

n

n

e

jn

n

j

t

y

o

g

o

o

1

1

1

2

2

1





 

t

n

n

e

n

j

t

x

n

t

jn

n

n

o

1

o

sin

1

1

2

1

1

2

2

1

o





 

g

1

1

j

j

H

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 9)

0

5

10

15

20

25

30

35

40

45

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lowpass filter and sawtooth signal – amplitude spectra

n

f

o

Lowpass filter

Sawtooth signal

f

g

/f

o

= 9

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 9)

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2

0.4

0.6

0.8

1

Lowpass filter response

time t/T

f

g

/f

o

= 9

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 3)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Lowpass filter and sawtooth signal – amplitude spectra

Lowpass filter

Sawtooth signal

f

g

/f

o

= 3

n

f

o

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 3)

0

0.5

1

1.5

2

2.5

3

3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lowpass filter response

time t/T

f

g

/f

o

= 3

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 1)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Lowpass filter and sawtooth signal – amplitude spectra

Lowpass filter

Sawtooth signal

f

g

/f

o

= 1

n

f

o

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 1)

0

0.5

1

1.5

2

2.5

3

3.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lowpass filter response

time t/T

f

g

/f

o

= 1

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 1/3)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Lowpass filter and sawtooth signal – amplitude spectra

f

g

/f

o

= 1/3

n

f

o

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 1/3)

0

0.5

1

1.5

2

2.5

3

3.5

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Lowpass filter response

time t/T

f

g

/f

o

= 1/3

„Signal Theory” Zdzisław Papir

background image

Highpass filter

 

RC

T

T

Ts

Ts

Cs

R

R

s

H

g

,

1

1

1

R

C

„Signal Theory” Zdzisław Papir

background image

Highpass
filter

„Signal Theory” Zdzisław Papir

10

-1

10

0

10

1

10

2

10

-1

10

0

g

 

dec

 

 

dB

H

log-log amplitude characteristics of the HPF (1st order)

 

 

 





1

,

0

1

,

log

20

1

,

1

g

g

g

2

g

g

g

g

H

H

j

j

j

H

background image

„Signal Theory” 

Zdzisław Papir

 









o

g

o

g

o

g

o

g

o

o

o

o

1

2

1

1

1

2

n

n

t

jn

t

jn

n

n

e

jn

e

jn

jn

n

j

t

y

 

t

n

n

e

n

j

t

x

n

t

jn

n

n

o

1

o

sin

1

1

2

1

1

2

2

1

o





 

g

g

1

j

j

j

H

Input/output signals – Fourier
series

background image

Amplitude spectra (f

g

/f

o

= 9)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Highpass filter and sawtooth signal – amplitude spectra

Highpass filter

Sawtooth signal

f

g

/f

o

= 9

n

f

o

„Signal Theory” 

Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 9)

0

0.5

1

1.5

2

2.5

3

3.5

-25

-20

-15

-10

-5

0

5

10

Highpass filter response

time t/T

f

g

/f

o

= 9

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 3)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Highpass filter and sawtooth signal – amplitude spectra

Highpass filter

Sawtooth signal

n

f

o

f

g

/f

o

= 3

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 3)

0

0.5

1

1.5

2

2.5

3

3.5

-6

-5

-4

-3

-2

-1

0

1

2

Highpass filter response

time t/T

f

g

/f

o

= 3

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 1)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Highpass filter and sawtooth signal – amplitude spectra

Highpass filter

Sawtooth signal

n

f

o

f

g

/f

o

= 1

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 1)

0

0.5

1

1.5

2

2.5

3

3.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

High pass filter

time t/T

f

g

/f

o

= 1

„Signal Theory” Zdzisław Papir

background image

Amplitude spectra (f

g

/f

o

= 1/3)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Highpass filter and sawtooth signal – amplitude spectra

Highpass filter

Sawtooth signal

n

f

o

f

g

/f

o

= 0,3

„Signal Theory” Zdzisław Papir

background image

Output signal y(t) (f

g

/f

o

= 1/3)

Highpass filter response

0

0.5

1

1.5

2

2.5

3

3.5

-0.06

-0.04

-0.02

0

0.02

0.04

time t/T

f

g

/f

o

= 0,3

„Signal Theory” Zdzisław Papir

background image

„Teoria sygnałów” Zdzisław Papir

 

d

e

j

X

t

x

t

j

2

1

)

(

   

 

   

j

X

j

H

j

Y

d

e

j

X

j

H

t

y

t

j

2

1

)

(

Transformata Fouriera sygnału wyjściowego y(t)

)

(s

H

)

(t

x

   

t

j

e

j

X

j

H

2

1

 

t

j

e

j

X

2

1

 

t

y

Signal filtering - Fourier transform

background image

 

 

 

   

j

X

j

H

j

Y

j

Y

t

y

 

   

   

   

 

 

t

t

x

t

h

t

y

t

x

t

h

j

X

j

H

j

Y

Impulse response of the filter

Signal filtering - Fourier transform

)

(s

H

 

j

X

t

x

)

(

)

(t

h

 

)

(t

h

t

y

 

t

t

x

)

(

Impulse response of a filter is its output signal when
input of a filter is excited by the Dirac delta impulse

(t).

„Signal Theory” 

Zdzisław Papir

background image

Frequency characteristics
of a signal after filtration

 

 

 

   

j

X

j

H

j

Y

j

Y

t

y

)

(s

H

 

j

X

t

x

)

(

 

 

 

 

 

 

 

   

   

j

j

j

e

j

H

j

X

j

Y

e

j

H

j

H

e

j

X

j

X

Filtration changes both:

amplitude spectrum

phase spectrum
of an input signal.

„Signal Theory” Zdzisław Papir

background image

Signal filtering - example

   

 

 

 



W

j

H

j

t

t

x

2

1

1

 

 

 

Wt

d

d

t

d

t

j

t

j

d

e

j

d

e

j

t

y

Wt

W

W

W

W

W

t

j

t

j

W

W

Si

1

2

1

sin

1

2

1

sin

1

2

1

sin

cos

2

1

2

1

2

1

2

1

1

2

1

0

0











 

x

d

x

0

sin

Si

„Signal Theory” 

Zdzisław Papir

background image

Sinus integral
properties

 

x

d

x

0

sin

Si

„Signal Theory” Zdzisław Papir

1. Sinus integral is an odd function

 

 

x

du

u

u

du

d

u

d

x

x

x

Si

sin

sin

Si

0

0

2. Sinus integral in zero vicinity (x 0)

 

0

sin

0

Si

0

0

d

0

sin

,

0

Si

0

x

d

x

x

background image

Sinus integral
properties

 

x

d

x

0

sin

Si

„Signal Theory” 

Zdzisław Papir

3. Horizontal asymptote (x )

 

2

sin

Si

lim

0

x

d

x

0

0

sin

2

1

sin

2

1

sin

F

d

d

4. Local extrema

 

0

,

0

sin

Si

k

k

x

x

x

dx

x

d

background image

Rising time of a filter output
is inversely proportional
to its bandwidth.

Signal filtering - example

„Signal Theory” Zdzisław Papir

1

0

 

 

Wt

t

y

Si

1

2

1

+

/W

-

/W

t

r

= 2

/W =

1/B

 

 

 

W

f

W

y

Si

1

2

1

The peak output value
does not depend on
the filter bandwidth.

background image

Summary

The output signal of the filter excited by a periodic signal
is a periodic signal as well; in most cases its Fourier series
is not summable to a closed form expression.

The Fourier transform of the output signal is a product of the

filter transfer function and input signal Fourier transform.

The impulse response of the filter is its output signal when
the filter is driven by the Dirac delta

(t).

The filter output signal is a convolution of the filter

impulse response and the input signal.

„Signal Theory” 

Zdzisław Papir


Document Outline


Wyszukiwarka

Podobne podstrony:
ARRL QST Magazine Clean up Signals with Band Pass Filters (part 1) (1998) WW
Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting sc
Applications of polyphase filters for bandpass sigma delta analog to digital conversion
Fine Filters CJC
Constant darkness is a circadian metabolic signal
Differential Signals, Rules to Live By
EMI Suppression Filters EMIFIL Nieznany
differential signals
(ebook pdf) Mathematics Statistical Signal Processing WLBIFTIJHHO6AMO5Z3SDWWHJDIBJQVMSGHGBTHI
FILTRY 3, //1) Simple comb filter
No Filter Trade as you see it
Pi filter id 356366 Nieznany
seamaster mpzzm signals
pisanie 16 Transition signals
doc0940 8 Point Moving Average Filter on tinyAVR and megaAVR devices
K filter
Fire Wall oparte na IP Filter

więcej podobnych podstron