objaśnienia: |
|
|
|
|
|
|
|
|
x |
y |
|
|
- do wprowadzenia |
|
|
|
|
|
|
|
0,5 |
0,59 |
NPP |
- normalny poziom pietrzenia [m n.p.m.] |
|
|
|
|
|
|
|
0,55 |
0,58 |
SNQdolne |
- poziom SNQ na dolnym stanowisku [m n.p.m.] |
|
|
|
|
|
|
|
0,6 |
0,575 |
lb |
- długość komory (komora+przegroda) [m] |
|
|
|
|
|
|
|
0,65 |
0,565 |
hu |
- głębokość wody poniżej przegrody [m] |
|
|
|
|
|
|
|
0,7 |
0,55 |
ho |
- głębokość wody powyżej przegrody [m] |
|
|
|
|
|
|
|
0,75 |
0,525 |
mr |
- współczynnik wydatku zależny od stosunku głębokości wody poniżej i powyżej przegrody |
|
|
|
|
|
|
|
0,8 |
0,49 |
s |
- szerokość szczeliny [m] |
|
|
|
|
|
|
|
0,833 |
0,46 |
hm |
- średnia głębokość wody [m] |
|
|
|
|
|
|
|
0,85 |
0,445 |
b |
- szerokość komór przepławki [m] |
|
|
|
|
|
|
|
0,9 |
0,39 |
d |
- grubość przegród [m] |
|
|
|
|
|
|
|
0,95 |
0,31 |
|
|
|
|
|
|
|
|
|
0,99 |
0,225 |
|
obliczenie przepławki |
|
|
|
|
|
|
|
|
|
|
|
NPP = |
124,45 |
m n.p.m. |
|
|
|
|
|
|
|
|
SNQdolne = |
122,5 |
m n.p.m. |
|
|
|
|
|
|
|
różnica wysokości GW i DW, htot = NPP-SNQdolne |
|
|
|
|
|
|
|
|
|
|
|
htot = |
1,95 |
m |
|
|
|
|
|
|
|
dopuszczalna różnica wysokości wody pomiędzy komorami Dh |
|
|
|
|
|
|
|
|
|
|
|
Dh = |
0,2 |
m |
|
|
|
|
|
|
|
minimalna ilość komór n = (htot / Dh) - 1 |
|
|
|
|
|
|
|
|
|
|
|
n = |
8,75000000000001 |
szt. |
|
|
|
|
|
|
|
dobrana ilość komór n |
|
|
|
|
|
|
|
|
|
|
|
n = |
11 |
szt. |
|
|
|
|
|
|
|
całkowita obliczeniowa długość przepławki Itot = n * lb + 2 * 1.0m |
|
|
|
|
|
|
|
|
|
|
|
lb = |
2 |
m |
|
|
|
|
|
|
|
|
Itot = |
24 |
m |
|
|
|
|
|
|
|
obliczeniowa różnica wysokości wody pomiędzy komorami Dh = htot / n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dh = |
0,1625 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
maksymalna prędkość wody w przesmykach vs = √(2gDh) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vs = |
1,78556713679436 |
m/s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
warunek na prędkość dopuszczalną: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa vs < vsmax = |
|
2 |
m/s |
OK !!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczenie wydatku w pierwszym przesmyku przepławki Q = (2/3)*mr*s(√ 2gh)*(ho13/2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hu1 = |
0,85 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ho1 = |
1 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hu1/ho1 = |
0,85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik wydatku mr = -3.424 (hu/ho)3 + 5.671 (hu/ho)2 - 3.28 (hu/ho) + 1.240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mr1 = |
0,447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s = |
0,22 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q = |
0,290091477190536 |
m3/s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczenie energii wody w pierwszym przesmyku przepławki Ev = (rgDhQ) / (bhm(lb-d)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = |
1,5 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d = |
0,1 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia głębokość hm1 = hu1 + Dh/2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hm1 = |
0,93125 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ev1 = |
174,239331619494 |
W/m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
warunek na energię dopuszczalną w pierwszym przesmyku przepławki: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa Ev < Edop = |
|
200 |
W/m3 |
OK !!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa Ev > Edop = |
|
150 |
W/m3 |
OK !!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczenie wydatku w ostatnim przesmyku przepławki Q = (2/3)*mr*s(√ 2gh)*(ho13/2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
huost = |
0,5 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hoost = |
0,655 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
huost/hoost = |
0,76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik wydatku mr = -3.424 (hu/ho)3 + 5.671 (hu/ho)2 - 3.28 (hu/ho) + 1.240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mrost = |
0,518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s = |
0,22 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q = |
0,178287272150735 |
m3/s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczenie energii wody w ostatnim przesmyku przepławki Ev = (rgDhQ) / (bhm(lb-d)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = |
1,5 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d = |
0,1 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia głębokość hmost = huost + Dh/2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hmost = |
0,58125 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Evost = |
171,567446273407 |
W/m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
warunek na energię dopuszczalną w ostatnim przesmyku przepławki: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa Ev < Edop = |
|
200 |
W/m3 |
OK !!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa Ev > Edop = |
|
150 |
W/m3 |
OK !!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|